
Understanding gradient descent, autodiff, and softmax

Deep Learning: Pre-
Requisites

Gradient Descent

• Gradient descent requires knowledge of, well, the gradient from your
cost function (MSE)

• Mathematically we need the first partial derivatives of all the inputs
• This is hard and inefficient if you just throw calculus at the problem

• Reverse-mode autodiff to the rescue!
• Optimized for many inputs + few outputs (like a neuron)

• Computes all partial derivatives in # of outputs + 1 graph traversals

• Still fundamentally a calculus trick – it’s complicated but it works

• This is what Tensorflow uses

autodiff

• Used for classification
• Given a score for each class

• It produces a probability of each class

• The class with the highest probability is the “answer” you get

softmax

x is a vector of input values
theta is a vector of weights

• Gradient descent is an algorithm for minimizing error over multiple
steps

• Autodiff is a calculus trick for finding the gradients in gradient descent

• Softmax is a function for choosing the most probable classification
given several input values

In review:

Evolving beyond nature

Introducing Artificial Neural
Networks

• Neurons in your cerebral cortex are
connected via axons

• A neuron “fires” to the neurons it’s
connected to, when enough of its input
signals are activated.

• Very simple at the individual neuron
level – but layers of neurons connected
in this way can yield learning behavior.

• Billions of neurons, each with thousands
of connections, yields a mind

The biological inspiration

• Neurons in your cortex seem to be
arranged into many stacks, or “columns”
that process information in parallel

• “mini-columns” of around 100 neurons
are organized into larger “hyper-
columns”. There are 100 million mini-
columns in your cortex

• This is coincidentally similar to how GPU’s
work…

Cortical columns

(credit: Marcel Oberlaender et al.)

• 1943!!

The first artificial neurons

A B

C An artificial neuron “fires” if more than N
input connections are active.

Depending on the number of connections
from each input neuron, and whether a
connection activates or suppresses a neuron,
you can construct AND, OR, and NOT logical
constructs this way.

This example would implement C = A OR B if the threshold is 2 inputs being active.

• 1957!

• Adds weights to the inputs;
output is given by a step
function

The Linear Threshold Unit (LTU)

Weight 1 Weight 2

Σ

Input 1 Input 2

Sum up the products of
the inputs and their
weights
Output 1 if sum is >= 0

• A layer of LTU’s

• A perceptron can learn by
reinforcing weights that lead to
correct behavior during
training

• This too has a biological basis
(“cells that fire together, wire
together”)

The Perceptron

Σ ΣΣ

Weight 1 Weight 2
Bias

Neuron
(1.0)

Input 1 Input 2

• Addition of “hidden layers”

• This is a Deep Neural
Network

• Training them is trickier –
but we’ll talk about that.

Multi-Layer Perceptrons

Σ ΣΣ

Weight 1 Weight 2
Bias

Neuron
(1.0)

Input 1 Input 2

Σ

Σ ΣΣ

• Replace step activation
function with something
better

• Apply softmax to the
output

• Training using gradient
descent

A Modern Deep Neural Network

Σ ΣΣ

Weight 1 Weight 2
Bias

Neuron
(1.0)

Input 1 Input 2

Σ

Σ ΣΣ

Softmax

Bias
Neuron

(1.0)

playground.tensorflow.org

Let’s play

Constructing, training, and tuning multi-layer perceptrons

Deep Learning

• How do you train a MLP’s weights? How does it
learn?

• Backpropagation… or more specifically:
Gradient Descent using reverse-mode autodiff!

• For each training step:
• Compute the output error
• Compute how much each neuron in the previous

hidden layer contributed
• Back-propagate that error in a reverse pass
• Tweak weights to reduce the error using gradient

descent

Backpropagation

• Step functions don’t work with gradient
descent – there is no gradient!
• Mathematically, they have no useful derivative.

• Alternatives:
• Logistic function
• Hyperbolic tangent function
• Exponential linear unit (ELU)
• ReLU function (Rectified Linear Unit)

• ReLU is common. Fast to compute and works
well.
• Also: “Leaky ReLU”, “Noisy ReLU”
• ELU can sometimes lead to faster learning

though.

Activation functions (aka rectifier)

ReLU function

• There are faster (as in faster learning) optimizers than gradient descent
• Momentum Optimization

• Introduces a momentum term to the descent, so it slows down as things start to flatten and speeds up as the
slope is steep

• Nesterov Accelerated Gradient
• A small tweak on momentum optimization – computes momentum based on the gradient slightly ahead of you,

not where you are
• RMSProp

• Adaptive learning rate to help point toward the minimum
• Adam

• Adaptive moment estimation – momentum + RMSProp combined
• Popular choice today, easy to use

Optimization functions

• With thousands of weights to tune, overfitting is a
problem

• Early stopping (when performance starts dropping)

• Regularization terms added to cost function during
training

• Dropout – ignore say 50% of all neurons randomly at
each training step
• Works surprisingly well!

• Forces your model to spread out its learning

Avoiding Overfitting

• Trial & error is one way
• Evaluate a smaller network with less neurons in

the hidden layers
• Evaluate a larger network with more layers

• Try reducing the size of each layer as you progress –
form a funnel

• More layers can yield faster learning

• Or just use more layers and neurons than you
need, and don’t care because you use early
stopping.

• Use “model zoos”

Tuning your topology

Tensorflow

• It’s not specifically for neural networks– it’s more generally an
architecture for executing a graph of numerical operations

• Tensorflow can optimize the processing of that graph, and distribute
its processing across a network
• Sounds a lot like Apache Spark, eh?

• It can also distribute work across GPU’s!
• Can handle massive scale – it was made by Google

• Runs on about anything

• Highly efficient C++ code with easy to use Python API’s

Why Tensorflow?

• Install with pip install tensorflow or
pip install tensorflow-gpu

• A tensor is just a fancy name for an
array or matrix of values

• To use Tensorflow, you:
• Construct a graph to compute your

tensors

• Initialize your variables

• Execute that graph – nothing actually
happens until then

Tensorflow basics

import tensorflow as tf

a = tf.Variable(1, name="a")

b = tf.Variable(2, name="b")

f = a + b

init = tf.global_variables_initializer()

with tf.Session() as s:

init.run()

print(f.eval())

World’s simplest Tensorflow app:

• Mathematical insights:
• All those interconnected arrows multiplying

weights can be thought of as a big matrix
multiplication

• The bias term can just be added onto the result
of that matrix multiplication

• So in Tensorflow, we can define a layer of a
neural network as:
output =
tf.matmul(previous_layer,
layer_weights) + layer_biases

• By using Tensorflow directly we’re kinda
doing this the “hard way.”

Creating a neural network with Tensorflow

Σ ΣΣ

Weight
1

Weight
2

Bias
Neuron

(1.0)

Input 1 Input 2

Σ

Σ ΣΣ

Softmax

Bias
Neuro

n
(1.0)

• Load up our training and testing data
• Construct a graph describing our neural network

• Use placeholders for the input data and target labels
• This way we can use the same graph for training and testing!

• Use variables for the learned weights for each
connection and learned biases for each neuron
• Variables are preserved across runs within a Tensorflow

session

• Associate an optimizer (ie gradient descent) to the
network

• Run the optimizer with your training data
• Evaluate your trained network with your testing

data

Creating a neural network with Tensorflow

• Neural networks usually work best if your input data is normalized.
• That is, 0 mean and unit variance

• The real goal is that every input feature is comparable in terms of magnitude

• scikit_learn’s StandardScaler can do this for you

• Many data sets are normalized to begin with – such as the one we’re
about to use.

Make sure your features are normalized

Let’s try it out

Keras

• Easy and fast prototyping
• Available as a higher-level API within

Tensorflow 1.9+

• scikit_learn integration

• Less to think about – which often
yields better results without even
trying

• This is really important! The faster
you can experiment, the better your
results.

Why Keras?

Let’s dive in: MNIST with Keras

• MNIST is an example of multi-class classification.

Example: multi-class classification

model = Sequential()

model.add(Dense(64, activation='relu', input_dim=20))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9,

nesterov=True)
model.compile(loss='categorical_crossentropy',

optimizer=sgd, metrics=['accuracy'])

Example: binary classification

model = Sequential()
model.add(Dense(64, input_dim=20, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='rmsprop',

metrics=['accuracy'])

from tensorflow.keras.wrappers.scikit_learn import KerasClassifier

def create_model():

model = Sequential()

model.add(Dense(6, input_dim=4, kernel_initializer='normal', activation='relu'))

model.add(Dense(4, kernel_initializer='normal', activation='relu'))

model.add(Dense(1, kernel_initializer='normal', activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer=‘adam', metrics=['accuracy'])

return model

estimator = KerasClassifier(build_fn=create_model, epochs=100, verbose=0)

cv_scores = cross_val_score(estimator, features, labels, cv=10)

print(cv_scores.mean())

Integrating Keras with scikit_learn

Let’s try it out: predict political parties with
Keras

Convolutional Neural
Networks

• When you have data that doesn’t neatly
align into columns
• Images that you want to find features within
• Machine translation
• Sentence classification
• Sentiment analysis

• They can find features that aren’t in a
specific spot
• Like a stop sign in a picture
• Or words within a sentence

• They are “feature-location invariant”

CNN’s: what are they for?

• Inspired by the biology of the visual cortex
• Local receptive fields are groups of neurons that only respond to a part of what

your eyes see (subsampling)

• They overlap each other to cover the entire visual field (convolutions)

• They feed into higher layers that identify increasingly complex images
• Some receptive fields identify horizontal lines, lines at different angles, etc. (filters)

• These would feed into a layer that identifies shapes

• Which might feed into a layer that identifies objects

• For color images, extra layers for red, green, and blue

CNN’s: how do they work?

• Individual local receptive fields scan the image
looking for edges, and pick up the edges of the
stop sign in a layer

• Those edges in turn get picked up by a higher level
convolution that identifies the stop sign’s shape
(and letters, too)

• This shape then gets matched against your
pattern of what a stop sign looks like, also using
the strong red signal coming from your red layers

• That information keeps getting processed upward
until your foot hits the brake!

• A CNN works the same way

How do we “know” that’s a stop sign?

• Source data must be of appropriate dimensions
• ie width x length x color channels

• Conv2D layer type does the actual convolution on a 2D image
• Conv1D and Conv3D also available – doesn’t have to be image data

• MaxPooling2D layers can be used to reduce a 2D layer down by taking
the maximum value in a given block

• Flatten layers will convert the 2D layer to a 1D layer for passing into a
flat hidden layer of neurons

• Typical usage:
• Conv2D -> MaxPooling2D -> Dropout -> Flatten -> Dense -> Dropout ->

Softmax

CNN’s with Keras

• Very resource-intensive (CPU, GPU, and
RAM)

• Lots of hyperparameters
• Kernel sizes, many layers with different

numbers of units, amount of pooling… in
addition to the usual stuff like number of
layers, choice of optimizer

• Getting the training data is often the
hardest part! (As well as storing and
accessing it)

CNN’s are hard

• Defines specific arrangement of layers, padding, and hyperparameters

• LeNet-5
• Good for handwriting recognition

• AlexNet
• Image classification, deeper than LeNet

• GoogLeNet
• Even deeper, but with better performance
• Introduces inception modules (groups of convolution layers)

• ResNet (Residual Network)
• Even deeper – maintains performance via skip connections.

Specialized CNN architectures

Let’s try it out

Recurrent Neural Networks

• Time-series data
• When you want to predict future behavior based on

past behavior
• Web logs, sensor logs, stock trades
• Where to drive your self-driving car based on past

trajectories

• Data that consists of sequences of arbitrary
length
• Machine translation
• Image captions
• Machine-generated music

RNN’s: what are they for?

A Recurrent Neuron

Σ

Another Way to Look At It

Σ Σ Σ

Time

A “Memory Cell”

A Layer of Recurrent Neurons

Σ Σ Σ Σ

• Sequence to sequence
• i.e., predict stock prices based on

series of historical data

• Sequence to vector
• i.e., words in a sentence to

sentiment

• Vector to sequence
• i.e., create captions from an image

• Encoder -> Decoder
• Sequence -> vector -> sequence
• i.e., machine translation

RNN Topologies

• Backpropagation through time
• Just like backpropagation on MLP’s, but applied to each time step.

• All those time steps add up fast
• Ends up looking like a really, really deep neural network.

• Can limit backpropagation to a limited number of time steps (truncated
backpropagation through time)

Training RNN’s

• State from earlier time steps get diluted over
time
• This can be a problem, for example when learning

sentence structures

• LSTM Cell
• Long Short-Term Memory Cell

• Maintains separate short-term and long-term
states

• GRU Cell
• Gated Recurrent Unit

• Simplified LSTM Cell that performs about as well

Training RNN’s

• It’s really hard
• Very sensitive to topologies, choice of

hyperparameters

• Very resource intensive

• A wrong choice can lead to a RNN that
doesn’t converge at all.

Training RNN’s

Let’s run an example.

The Ethics of Deep Learning

• Accuracy doesn’t tell the whole story

• Type 1: False positive
• Unnecessary surgery
• Slam on the brakes for no reason

• Type 2: False negative
• Untreated conditions
• You crash into the car in front of you

• Think about the ramifications of different types of errors from your
model, tune it accordingly

Types of errors

• Just because your model isn’t human
doesn’t mean it’s inherently fair

• Example: train a model on what sort
of job applicants get hired, use it to
screen resumes
• Past biases toward gender / age / race

will be reflected in your model, because
it was reflected in the data you trained
the model with.

Hidden biases

• Don’t oversell the capabilities of an algorithm in your excitement

• Example: medical diagnostics that are almost, but not quite, as good
as a human doctor

• Another example: self-driving cars that can kill people

Is it really better than a human?

• Gather ‘round the fire while Uncle Frank tells you a story.

Unintended applications of your research

Learning More about Deep
Learning

