
Getting Set Up



• Install Enthought Canopy (version 1.6.2 or newer!)

• Open up the package manager, and install:
▫ scikit_learn

▫ xlrd

▫ statsmodels

• Open an editor window and go to the interactive command prompt
▫ !pip install pydot2

Installation Checklist



Python Basics



Let’s just jump right into some code.



Presented by

Frank Kane

Types of Data



Many Flavors of 
Data



• Numerical

• Categorical

• Ordinal

Major Types of Data



• Represents some sort of quantitative 
measurement
▫ Heights of people, page load times, stock prices, 

etc.

• Discrete Data
▫ Integer based; often counts of some event.

 How many purchases did a customer make in a year?
 How many times did I flip “heads”?

• Continuous Data
▫ Has an infinite number of possible values

 How much time did it take for a user to check out?
 How much rain fell on a given day?

Numerical



• Qualitative data that has no inherent 
mathematical meaning

▫ Gender, Yes/no (binary data), Race, State of 
Residence, Product Category, Political Party, 
etc.

• You can assign numbers to categories in order 
to represent them more compactly, but the 
numbers don’t have mathematical meaning

Categorical



• A mixture of numerical and categorical

• Categorical data that has mathematical 
meaning

• Example: movie ratings on a 1-5 scale. 
▫ Ratings must be 1, 2, 3, 4, or 5

▫ But these values have mathematical 
meaning; 1 means it’s a worse movie 
than a 2.

Ordinal



• Are the following types of data numerical, 
categorical, or ordinal?

▫ How much gas is in your gas tank

▫ A rating of your overall health where the 
choices are 1, 2, 3, or 4, corresponding to 
“poor”, “moderate”, “good”, and “excellent”

▫ The races of your classmates

▫ Ages in years

▫ Money spent in a store

Quiz time!





Mean, Median, and Mode



• AKA Average

• Sum / number of samples

• Example:
▫ Number of children in each house on my street:

Mean

0, 2, 3, 2, 1, 0, 0, 2, 0

The MEAN is (0+2+3+2+1+0+0+2+0) / 9 = 1.11



• Sort the values, and take the value at the midpoint.

• Example:

Median

0, 2, 3, 2, 1, 0, 0, 2, 0
Sort it:

0, 0, 0, 0, 1, 2, 2, 2, 3



• If you have an even number of samples, 
take the average of the two in the middle.

• Median is less susceptible to outliers than 
the mean
▫ Example: mean household income in the US 

is $72,641, but the median is only $51,939 –
because the mean is skewed by a handful of 
billionaires.

▫ Median better represents the “typical” 
American in this example.

Median



• The most common value in a data set
▫ Not relevant to continuous numerical data

• Back to our number of kids in each house example:

Mode

0, 2, 3, 2, 1, 0, 0, 2, 0
How many of each value are there?

0: 4, 1: 1, 2: 3, 3: 1
The MODE is 0





Standard Deviation and Variance



An example of a histogram



• Variance (𝜎2) is simply the average of the squared differences from the 
mean

• Example: What is the variance of the data set (1, 4, 5, 4, 8)?
▫ First find the mean: (1+4+5+4+8)/5 = 4.4

▫ Now find the differences from the mean: (-3.4, -0.4, 0.6, -0.4, 3.6)

▫ Find the squared differences: (11.56, 0.16, 0.36, 0.16, 12.96)

▫ Find the average of the squared differences:
 𝜎2= (11.56 + 0.16 + 0.36 + 0.16 + 12.96) / 5 = 5.04

Variance measures how “spread-out” the data is.



𝜎2 = 5.04

𝜎 = 5.04 = 2.24

So the standard deviation of 
(1, 4, 5, 4, 8) is 2.24.

This is usually used as a way to identify outliers. Data points that lie more than 
one standard deviation from the mean can be considered unusual.

You can talk about how extreme a data point is by talking about “how many 
sigmas” away from the mean it is.

Standard Deviation 𝜎 is just the square root of the 
variance.
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• If you’re working with a sample of data instead of an entire data set (the 
entire population)…
▫ Then you want to use the “sample variance” instead of the “population 

variance”

▫ For N samples, you just divide the squared variances by N-1 instead of N.

▫ So, in our example, we computed the population variance like this:
 𝜎2= (11.56 + 0.16 + 0.36 + 0.16 + 12.96) / 5 = 5.04

▫ But the sample variance would be:
 𝑆2= (11.56 + 0.16 + 0.36 + 0.16 + 12.96) / 4 = 6.3

Population vs. Sample



• Population variance:

▫ 𝜎2 =
 𝑋−𝜇 2

𝑁

• Sample variance:

▫ 𝑠2 =
 (𝑋−𝑀)2

𝑁−1

Fancy Math



Let’s look at another example.





Probability Density Functions



Example: a “normal distribution”



Gives you the probability of a data point falling within 
some given range of a given value.



Probability Mass Function



Let’s play with some examples.





Percentiles and Moments



• In a data set, what’s the point at which X% of the values are less than 
that value?

• Example: income distribution

Percentiles



Percentiles in a normal distribution



Let’s look at some examples.



• Quantitative measures of the shape of a probability density function

• Mathematically they are a bit hard to wrap your head around:

▫ 𝜇𝑛 =  −∞
∞

𝑥 − 𝑐 𝑛𝑓 𝑥 𝑑𝑥 (for moment 𝑛 around value 𝑐)

• But intuitively, it’s a lot simpler in statistics.

Moments



The first moment is the mean.



The second moment is the variance.



Yes, it’s just that simple.



• How “lopsided” is the distribution?

• A distribution with a longer tail on the left will be skewed left, and have 
a negative skew.

The third moment is “skew” (𝛾)



• How thick is the tail, and how sharp is the peak, compared to a normal 
distribution?

• Example: higher peaks have higher kurtosis

The fourth moment is “kurtosis”



Let’s compute the 4 moments in Python.





Covariance and Correlation



• Measures how two variables vary in tandem from their means.

Covariance



• Think of the data sets for the two variables as high-dimensional vectors

• Convert these to vectors of variances from the mean

• Take the dot product (cosine of the angle between them) of the two 
vectors

• Divide by the sample size

Measuring covariance



• We know a small covariance, close to 0, means there isn’t much 
correlation between the two variables.

• And large covariances – that is, far from 0 (could be negative for inverse 
relationships) mean there is a correlation

• But how large is “large”?

Interpreting covariance is hard



• Just divide the covariance by the standard deviations of both variables, 
and that normalizes things.

• So a correlation of -1 means a perfect inverse correlation

• Correlation of 0: no correlation

• Correlation 1: perfect correlation

That’s where correlation comes in!



• Only a controlled, randomized experiment can give you insights on 
causation.

• Use correlation to decide what experiments to conduct!

Remember: correlation does not imply causation!



Let’s play with some data.





Conditional Probability



• If I have two events that depend on each other, what’s the probability 
that both will occur?

• Notation: P(A,B) is the probability of A and B both occurring

• P(B|A) : Probability of B given that A has occurred

• We know:

P(B|A) = 
P(A,B)
P(A)

Conditional Probability



• I give my students two tests. 60% of my students passed both tests, but 
the first test was easier – 80% passed that one. What percentage of 
students who passed the first test also passed the second?

• A = passing the first test, B = passing the second test

• So we are asking for P(B|A) – the probability of B given A

• P(B|A) = 
P(A,B)
P(A)

= 
0.6

0.8
= 0.75

• 75% of students who passed the first test passed the second.

For example



Let’s do another example using Python.



Bayes’ Theorem



• Now that you understand conditional probability, you can understand Bayes’ 
Theorem:

𝑃 𝐴 𝐵 =
𝑃 𝐴 𝑃 𝐵 𝐴

𝑃 𝐵

In English – the probability of A given B, is the probability of A times the 
probability of B given A over the probability of B.

The key insight is that the probability of something that depends on B depends 
very much on the base probability of B and A. People ignore this all the time.

Bayes’ Theorem



• Drug testing is a common example. Even a “highly 
accurate” drug test can produce more false 
positives than true positives.

• Let’s say we have a drug test that can accurately 
identify users of a drug 99% of the time, and 
accurately has a negative result for 99% of non-
users. But only 0.3% of the overall population 
actually uses this drug.

Bayes’ Theorem to the rescue



• Event A = Is a user of the drug, Event B = tested positively for the drug.

• We can work out from that information that P(B) is 1.3% (0.99 * 0.003 + 
0.01 * 0.997 – the probability of testing positive if you do use, plus the 
probability of testing positive if you don’t.)

• 𝑃 𝐴 𝐵 =
𝑃 𝐴 𝑃 𝐵 𝐴

𝑃 𝐵
= 
0.003 ∗0.99

0.013
= 22.8%

• So the odds of someone being an actual user of the drug given that they 
tested positive is only 22.8%!

• Even though P(B|A) is high (99%), it doesn’t mean P(A|B) is high.

Bayes’ Theorem to the rescue





Linear Regression



• Fit a line to a data set of observations

• Use this line to predict unobserved values

• I don’t know why they call it “regression.” 
It’s really misleading. You can use it to 
predict points in the future, the past, 
whatever. In fact time usually has nothing 
to do with it.

Linear Regression



• Usually using “least squares”
• Minimizes the squared-error between each point and the 

line
• Remember the slope-intercept equation of a line? y=mx+b
• The slope is the correlation between the two variables times 

the standard deviation in Y, all divided by the standard 
deviation in X.
▫ Neat how standard deviation how some real mathematical 

meaning, eh?

• The intercept is the mean of Y minus the slope times the 
mean of X

• But Python will do all that for you.

Linear Regression: How does it work?



• Least squares minimizes the sum of squared errors.

• This is the same as maximizing the likelihood of the observed data if you 
start thinking of the problem in terms of probabilities and probability 
distribution functions

• This is sometimes called “maximum likelihood estimation”

Linear Regression: How does it work?



• Gradient Descent is an alternate method 
to least squares.

• Basically iterates to find the line that best 
follows the contours defined by the data.

• Can make sense when dealing with 3D 
data

• Easy to try in Python and just compare the 
results to least squares
▫ But usually least squares is a perfectly good 

choice.

More than one way to do it



• How do we measure how well our line fits our data?

• R-squared (aka coefficient of determination) measures:

The fraction of the total variation in Y that is 
captured by the model

Measuring error with r-squared



1.0 -
𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟𝑠

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚𝑚𝑒𝑎𝑛

Computing r-squared



• Ranges from 0 to 1

• 0 is bad (none of the variance is captured), 1 is good (all of the variance 
is captured).

Interpreting r-squared



Let’s play with an example.





Polynomial Regression



• Not all relationships are linear.

• Linear formula: y = mx + b
▫ This is a “first order” or “first degree” 

polynomial, as the power of x is 1

• Second order polynomial: 𝑦 = 𝑎𝑥2 +
𝑏𝑥 + 𝑐

• Third order: 𝑦 = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑

• Higher orders produce more complex 
curves.

Why limit ourselves to straight lines?



• Don’t use more degrees than you need

• Visualize your data first to see how complex of a curve there might 
really be

• Visualize the fit – is your curve going out of its way to accommodate 
outliers?

• A high r-squared simply means your curve fits your training data well; 
but it may not be a good predictor.

• Later we’ll talk about more principled ways to detect overfitting 
(train/test)

Beware overfitting



• numpy.polyfit() makes it easy.

Let’s play with an example



Multivariate Regression



• What if more than one variable 
influences the one you’re 
interested in?

• Example: predicting a price for a 
car based on its many attributes 
(body style, brand, mileage, etc.)

Multivariate regression (Multiple Regression)



• We just end up with coefficients for each factor.
▫ For example, 𝑝𝑟𝑖𝑐𝑒 = 𝛼 + 𝛽1mileage + 𝛽2age + 𝛽3doors

▫ These coefficients imply how important each factor is (if the data is all 
normalized!)

▫ Get rid of ones that don’t matter!

• Can still measure fit with r-squared

• Need to assume the different factors are not themselves dependent on 
each other.

Still uses least squares



• The statsmodel package makes it easy.

Let’s dive into an example.



Multi-Level Models



• The concept is that some effects happen at various levels.

• Example: your health depends on a hierarchy of the health of your cells, 
organs, you as a whole, your family, your city, and the world you live in.

• Your wealth depends on your own work, what your parents did, what 
your grandparents did, etc.

• Multi-level models attempt to model and account for these 
interdependencies.

Multi-Level Models



• You must identify the factors that affect the outcome you’re trying to 
predict at each level.

• For example – SAT scores might be predicted based on the genetics of 
individual children, the home environment of individual children, the 
crime rate of the neighborhood they live in, the quality of the teachers 
in their school, the funding of their school district, and the education 
policies of their state.

• Some of these factors affect more than one level. For example, crime 
rate might influence the home environment too.

Modeling multiple levels



• I just want you to be aware of the concept, as 
multi-level models showed up on some data 
science job requirements I’ve seen.

• You’re not ready for it yet. Entire advanced 
statistics and modeling courses exist on this 
one topic alone.

• Thick books exist on it too, when you’re ready.

Doing this is hard.





And the concept of train/test

Supervised and Unsupervised Machine Learning



• Algorithms that can learn from 
observational data, and can make 
predictions based on it.

What is machine learning?

Yeah, that’s pretty much what your own brain does too.



• The model is not given any “answers” to learn from; it must make sense 
of the data just given the observations themselves.

• Example: group (cluster) some objects together into 2 different sets. But 
I don’t tell you what the “right” set is for any object ahead of time.

Unsupervised Learning

Do I want big and small things? Round and square things? Red and blue things?
Unsupervised learning could give me any of those results.



• Unsupervised learning sounds awful! Why use it?
• Maybe you don’t know what you’re looking for – you’re looking for 

latent variables.
• Example: clustering users on a dating site based on their information 

and behavior. Perhaps you’ll find there are groups of people that 
emerge that don’t conform to your known stereotypes.

• Cluster movies based on their properties. Perhaps our current concepts 
of genre are outdated?

• Analyze the text of product descriptions to find the terms that carry the 
most meaning for a certain category.

Unsupervised Learning



• In supervised learning, the data the algorithm 
“learns” from comes with the “correct” answers.

• The model created is then used to predict the 
answer for new, unknown values.

• Example: You can train a model for predicting car 
prices based on car attributes using historical sales 
data. That model can then predict the optimal price 
for new cars that haven’t been sold before.

Supervised Learning



• If you have a set of training data that includes the 
value you’re trying to predict – you don’t have to 
guess if the resulting model is good or not.

• If you have enough training data, you can split it 
into two parts: a training set and a test set.

• You then train the model using only the training set
• And then measure (using r-squared or some other 

metric) the model’s accuracy by asking it to predict 
values for the test set, and compare that to the 
known, true values.

Evaluating Supervised Learning

Training 
set

80%

Test set
20%

Car Sales Data

Training set

Test set



• Need to ensure both sets are large 
enough to contain representatives 
of all the variations and outliers in 
the data you care about

• The data sets must be selected 
randomly

• Train/test is a great way to guard 
against overfitting

Train / Test in practice



• Maybe your sample sizes are too small

• Or due to random chance your train and 
test sets look remarkably similar

• Overfitting can still happen

Train/Test is not Infallible



• One way to further protect against overfitting is K-fold cross validation

• Sounds complicated. But it’s a simple idea:
▫ Split your data into K randomly-assigned segments

▫ Reserve one segment as your test data

▫ Train on each of the remaining K-1 segments and measure their 
performance against the test set

▫ Take the average of the K-1 r-squared scores

K-fold Cross Validation



Let’s go do some training and testing.





Bayesian Methods



• 𝑃 𝐴 𝐵 =
𝑃 𝐴 𝑃(𝐵|𝐴)

𝑃 𝐵

• Let’s use it for machine learning! I want a spam classifier.
• Example: how would we express the probability of an email being spam if it 

contains the word “free”?

• 𝑃 𝑆𝑝𝑎𝑚 𝐹𝑟𝑒𝑒) =
𝑃 𝑆𝑝𝑎𝑚 𝑃 𝐹𝑟𝑒𝑒 𝑆𝑝𝑎𝑚)

𝑃 𝐹𝑟𝑒𝑒

• The numerator is the probability of a message being spam and containing the 
word “free” (this is subtly different from what we’re looking for)

• The denominator is the overall probability of an email containing the word 
“free”. (Equivalent to P(Free|Spam)P(Spam) + P(Free|Not Spam)P(Not Spam))

• So together – this ratio is the % of emails with the word “free” that are spam.

Remember Bayes’ Theorem?



• We can construct P(Spam | Word) for every 
(meaningful) word we encounter during training

• Then multiply these together when analyzing a 
new email to get the probability of it being spam.

• Assumes the presence of different words are 
independent of each other – one reason this is 
called “Naïve Bayes”.

What about all the other words?



• Scikit-learn to the rescue!

• The CountVectorizer lets us operate on lots of words at once, and 
MultinomialNB does all the heavy lifting on Naïve Bayes.

• We’ll train it on known sets of spam and “ham” (non-spam) emails
▫ So this is supervised learning!

• Let’s do this

Sounds like a lot of work.





K-Means Clustering



• Attempts to split data into K groups that are 
closest to K centroids

• Unsupervised learning – uses only the 
positions of each data point

• Can uncover interesting groupings of people 
/ things / behavior
▫ Example: Where do millionaires live?
▫ What genres of music / movies / etc. naturally 

fall out of data?
▫ Create your own stereotypes from 

demographic data

K-Means Clustering



• Sounds fancy! Wow! Unsupervised machine learning! Clusters! K!

• Actually how it works is really simple.
▫ Randomly pick K centroids (k-means)

▫ Assign each data point to the centroid it’s closest to

▫ Recompute the centroids based on the average position of each centroid’s 
points

▫ Iterate until points stop changing assignment to centroids

• If you want to predict the cluster for new points, just find the centroid 
they’re closest to.

K-Means Clustering



Graphical example

Images from Wikimedia Commons



• Choosing K
▫ Try increasing K  values until you stop getting large reductions in squared 

error (distances from each point to their centroids)

• Avoiding local minima
▫ The random choice of initial centroids can yield different results

▫ Run it a few times just to make sure your initial results aren’t wacky

• Labeling the clusters
▫ K-Means does not attempt to assign any meaning to the clusters you find

▫ It’s up to you to dig into the data and try to determine that

K-Means Clustering Gotchas



• Again, scikit-learn makes this easy.

Let’s cluster stuff.





Entropy



• A measure of a data set’s disorder – how same 
or different it is.

• If we classify a data set into N different classes 
(example: a data set of animal attributes and 
their species)
▫ The entropy is 0 if all of the classes in the data are 

the same (everyone is an iguana)

▫ The entropy is high if they’re all different

• Again, a fancy word for a simple concept.

Entropy



• 𝐻 𝑆 = −𝑝1 ln 𝑝1 − ⋯− 𝑝𝑛 ln 𝑝𝑛
• 𝑝𝑖 represents the proportion of the data labeled for each class

• Each term looks like this:

Computing entropy





Decision Trees



• You can actually construct a 
flowchart to help you decide a 
classification for something with 
machine learning

• This is called a Decision Tree

• Another form of supervised learning
▫ Give it some sample data and the 

resulting classifications

▫ Out comes a tree!

Decision Trees



• You want to build a system to filter out resumes based on historical 
hiring data

• You have a database of some important attributes of job candidates, 
and you know which ones were hired and which ones weren’t

• You can train a decision tree on this data, and arrive at a system for 
predicting whether a candidate will get hired based on it!

Decision Tree example



Totally Fabricated Hiring Data

Candidate 
ID

Years 
Experience

Employed?
Previous 
employers

Level of 
Education

Top-tier 
school

Interned Hired

0 10 1 4 0 0 0 1

1 0 0 0 0 1 1 1

2 7 0 6 0 0 0 0

3 2 1 1 1 1 0 1

4 20 0 2 2 1 0 0



Totally Fabricated Should-I-Hire-This-Person Tree

Did an internship?

Currently 
employed?

Less than one prior 
employer?

Attended a top-tier 
school?

No Yes

No Yes

No Yes

No Yes

Hire!

Hire!

Hire!

Don’t Hire!

Don’t Hire!



• At each step, find the attribute we can use to partition the data set to 
minimize the entropy of the data at the next step

• Fancy term for this simple algorithm: ID3

• It is a greedy algorithm – as it goes down the tree, it just picks the 
decision that reduce entropy the most at that stage.
▫ That might not actually result in an optimal tree.

▫ But it works.

How Decision Trees Work



• Decision trees are very susceptible to 
overfitting

• To fight this, we can construct several 
alternate decision trees and let them “vote” 
on the final classification
▫ Randomly re-sample the input data for each 

tree (fancy term for this: bootstrap 
aggregating or bagging)

▫ Randomize a subset of the attributes each 
step is allowed to choose from

Random Forests



• Yet again, scikit-learn is awesome for this.

Let’s go make some trees.





Ensemble Learning



• Random Forests was an example of ensemble learning

• It just means we use multiple models to try and solve the same 
problem, and let them vote on the results.

Ensemble Learning



• Random Forests uses bagging (bootstrap aggregating) to implement 
ensemble learning
▫ Many models are built by training on randomly-drawn subsets of the data

• Boosting is an alternate technique where each subsequent model in the 
ensemble boosts attributes that address data mis-classified by the previous 
model

• A bucket of models trains several different models using training data, and 
picks the one that works best with the test data

• Stacking runs multiple models at once on the data, and combines the results 
together
▫ This is how the Netflix prize was won!

Ensemble Learning



• Bayes Optimal Classifier
▫ Theoretically the best – but almost always impractical

• Bayesian Parameter Averaging
▫ Attempts to make BOC practical – but it’s still misunderstood, susceptible 

to overfitting, and often outperformed by the simpler bagging approach

• Bayesian Model Combination
▫ Tries to address all of those problems

▫ But in the end, it’s about the same as using cross-validation to find the best 
combination of models

Advanced Ensemble Learning: Ways to Sound Smart





Support Vector Machines



• Works well for classifying higher-dimensional data (lots of features)

• Finds higher-dimensional support vectors across which to divide the 
data (mathematically, these support vectors define hyperplanes. 
Needless to say I’m not going to get into the mathematical details!)

• Uses something called the kernel trick to represent data in higher-
dimensional spaces to find hyperplanes that might not be apparent in 
lower dimensions

Support Vector Machines



• The important point is that SVM’s employ some advanced mathematical 
trickery to cluster data, and it can handle data sets with lots of features.

• It’s also fairly expensive – the “kernel trick” is the only thing that makes 
it possible.

Higher dimensions? Hyperplanes? Huh?



• In practice you’ll use something 
called SVC to classify data using 
SVM.

• You can use different “kernels” with 
SVC. Some will work better than 
others for a given data set.

Support Vector Classification



• Don’t even try to do this without scikit-learn.

Let’s play with SVC’s





Recommender Systems



What are recommender systems?



• Build a matrix of things each user bought/viewed/rated

• Compute similarity scores between users

• Find users similar to you

• Recommend stuff they bought/viewed/rated that you haven’t yet.

User-Based Collaborative Filtering



User-Based Collaborative Filtering



User-Based Collaborative Filtering



• People are fickle; tastes change

• There are usually many more people than things

• People do bad things

Problems with User-Based CF



• A movie will always be the same movie – it doesn’t change

• There are usually fewer things than people (less computation to do)

• Harder to game the system

What if we based recommendations on relationships 
between things instead of people?



• Find every pair of movies that were watched by the same person

• Measure the similarity of their ratings across all users who watched 
both

• Sort by movie, then by similarity strength

• (This is just one way to do it!)

Item-Based Collaborative Filtering



Item-Based Collaborative Filtering



Item-Based Collaborative Filtering



Item-Based Collaborative Filtering



Item-Based Collaborative Filtering



• Next, we’ll use Python to create real “movie similarities” using the real 
MovieLens data set.
▫ In addition to being important for item-based collaborative filtering, these 

results are valuable in themselves – think “people who liked X also liked Y”

• It’s real world data, and we’ll encounter real world problems

• Then we’ll use those results to create movie recommendations for 
individuals

Let’s Do This





K-Nearest Neighbor



• Used to classify new data points based on “distance” to known data

• Find the K nearest neighbors, based on your distance metric

• Let them all vote on the classification

• That’s it!

K-Nearest Neighbor (KNN)



• Although it’s one of the simplest machine learning models there is – it 
still qualifies as “supervised learning”.

• But let’s do something more complex with it

• Movie similarities just based on metadata!

It’s Really That Simple





Discrete Choice Models



• Predict some choice people have 
between discrete alternatives
▫ Do I take the train, bus, or car to work 

today? (Multinomial choice)

▫ Which college will I go to? (Multinomial)

▫ Will I cheat on my spouse? (Binary)

• The alternatives must be finite, 
exhaustive, and mutually exclusive

Discrete Choice Models



• Use some sort of regression on the relevant 
attributes
▫ Attributes of the people
▫ Variables of the alternatives

• Generally uses Logit or Probit models
▫ Logistic Regression, Probit Model
▫ Based on some utility function you define
▫ Similar – one uses logistic distribution, Probit uses 

normal distribution. Logistic looks a lot like normal, but 
with fatter tails (higher kurtosis)

Discrete Choice Models



• Will my spouse cheat on me?

Example





Principal Component Analysis

The Curse of Dimensionality



• Many problems can be thought of as having a huge number of 
“dimesions”

• For example, in recommending movies, the ratings vector for each 
movie may represent a dimension – every movie is its own dimension!

• That makes your head hurt. It’s tough to visualize.

• Dimensionality reduction attempts to distill higher-dimensional data 
down to a smaller number of dimensions, while preserving as much of 
the variance in the data as possible.

What is the curse of dimensionality?



• This is an example of a dimensionality reduction algorithm.

• It reduces data down to K dimensions.

Remember K-Means Clustering?



• Involves fancy math – but at a high level:

• Finds “eigenvectors” in the higher dimensional data
▫ These define hyperplanes that split the data while 

preserving the most variance in it

▫ The data gets projected onto these hyperplanes, which 
represent the lower dimensions you want to represent

▫ A popular implementation of this is called Singular Value 
Decomposition (SVD)

• Also really useful for things like image compression 
and facial recognition

Another way: Principal Component Analysis (PCA)



• The “Iris dataset” comes with scikit-learn
• An Iris flower has petals and sepals (the 

lower, supportive part of the flower.)
• We know the length and width of the petals 

and sepals for many Iris specimens
▫ That’s four dimensions! Ow.
▫ We also know the subspecies classification of 

each flower

• PCA lets us visualize this in 2 dimensions 
instead of 4, while still preserving variance.

Example: Visualizing 4-D Iris Flower Data



• Yet again, scikit-learn makes this complex technique really easy.

Example: Visualizing 4-D Iris Flower Data





Data Warehousing Introduction

ETL and ELT



• A large, centralized database that contains 
information from many sources

• Often used for business analysis in large corporations 
or organizations

• Queried via SQL or tools (i.e. Tableau)
• Often entire departments are dedicated to 

maintaining a data warehouse
▫ Data normalization is tricky – how does all of this data 

relate to each other? What views do people need?
▫ Maintaining the data feeds is a lot of work
▫ Scaling is tricky

What is Data Warehousing?



• ETL and ELT refer to how data gets into a data warehouse.

• Traditionally, the flow was Extract, Transform, Load:
▫ Raw data from operational systems is first periodically 

extracted

▫ Then, the data is transformed into the schema needed by the 
DW

▫ Finally, the data is loaded into the data warehouse, already in 
the structure needed

• But what if we’re dealing with “big data”? That transform 
step can turn into a big problem.

ETL: Extract, Transform, Load



• Today, a huge Oracle instance isn’t the only choice for a large 
data warehouse

• Things like Hive let you host massive databases on a Hadoop 
cluster

• Or, you might store it in a large, distributed NoSQL data store 
▫ …and query it using things like Spark or MapReduce

• The scalability of Hadoop lets you flip the loading process on 
its head
▫ Extract raw data as before
▫ Load it in as-is
▫ Then use the power of Hadoop to transform it in-place

ELT: Extract, Load, Transform



• Data warehousing is a discipline in itself, too big too cover here

• Check out other courses on Big Data, Spark, and MapReduce
▫ We will cover Spark in more depth later in this course.

Lots more to explore





Reinforcement Learning



• You have some sort of agent that “explores” some space
• As it goes, it learns the value of different state changes in different 

conditions
• Those values inform subsequent behavior of the agent
• Examples: Pac-Man, Cat & Mouse game
• Yields fast on-line performance once the space has been explored

Reinforcement Learning



• A specific implementation of reinforcement learning

• You have:
▫ A set of environmental states s

▫ A set of possible actions in those states a

▫ A value of each state/action Q

• Start off with Q values of 0

• Explore the space

• As bad things happen after a given state/action, reduce its Q

• As rewards happen after a given state/action, increase its Q

Q-Learning



• What are some state/actions here?
▫ Pac-man has a wall to the West
▫ Pac-man dies if he moves one step South
▫ Pac-man just continues to live if going North or East

• You can “look ahead” more than one step by using a discount factor when 
computing Q (here s is previous state, s’ is current state)
▫ Q(s,a) += discount * (reward(s,a) + max(Q(s’)) – Q(s,a))

Q-Learning

Q(s, a) += alpha * (reward(s,a) + max(Q(s') - Q(s,a)) where s is the previous state, a is the previous action,s' is the current state, and alpha is the discount factor (set to .5 here).



• How do we efficiently explore all of the possible states?
▫ Simple approach: always choose the action for a given state with the 

highest Q. If there’s a tie, choose at random
 But that’s really inefficient, and you might miss a lot of paths that way

▫ Better way: introduce an epsilon term
 If a random number is less than epsilon, don’t follow the highest Q, but choose 

at random

 That way, exploration never totally stops

 Choosing epsilon can be tricky

The exploration problem



• Markov Decision Process
▫ From Wikipedia: Markov decision processes (MDPs) provide a mathematical 

framework for modeling decision making in situations where outcomes are 
partly random and partly under the control of a decision maker.

▫ Sound familiar? MDP’s are just a way to describe what we just did using 
mathematical notation.

▫ States are still described as s and s’

▫ State transition functions are described as 𝑃𝑎 𝑠, 𝑠′

▫ Our “Q” values are described as a reward function 𝑅𝑎 𝑠, 𝑠′

• Even fancier words! An MDP is a discrete time stochastic control process.

Fancy Words

https://en.wikipedia.org/wiki/Decision_making
https://en.wikipedia.org/wiki/Randomness#In_mathematics


• Dynamic Programming
▫ From Wikipedia: dynamic programming is a method for solving a complex 

problem by breaking it down into a collection of simpler subproblems, 
solving each of those subproblems just once, and storing their solutions -
ideally, using a memory-based data structure. The next time the same 
subproblem occurs, instead of recomputing its solution, one simply looks 
up the previously computed solution, thereby saving computation time at 
the expense of a (hopefully) modest expenditure in storage space.

▫ Sound familiar?

More Fancy Words



• You can make an intelligent Pac-Man in a few steps:
▫ Have it semi-randomly explore different choices of 

movement (actions) given different conditions (states)

▫ Keep track of the reward or penalty associated with 
each choice for a given state/action (Q)

▫ Use those stored Q values to inform its future choices

• Pretty simple concept. But hey, now you can say you 
understand reinforcement learning, Q-learning, 
Markov Decision Processes, and Dynamic 
Programming!

So to recap



• Python Markov Decision Process Toolbox:
▫ http://pymdptoolbox.readthedocs.org/en/latest/api/mdp.html

• Cat & Mouse Example:
▫ https://github.com/studywolf/blog/tree/master/RL/Cat%20vs%20Mouse%

20exploration

• Pac-Man Example:
▫ https://inst.eecs.berkeley.edu/~cs188/sp12/projects/reinforcement/reinfor

cement.html

Implementing Reinforcement Learning

http://pymdptoolbox.readthedocs.org/en/latest/api/mdp.html
https://github.com/studywolf/blog/tree/master/RL/Cat vs Mouse exploration
https://inst.eecs.berkeley.edu/~cs188/sp12/projects/reinforcement/reinforcement.html




The Bias / Variance Tradeoff



• Bias is how far removed the 
mean of your predicted values 
is from the “real” answer

• Variance is how scattered your 
predicted values are from the 
“real” answer

• Describe the bias and variance 
of these four cases (assuming 
the center is the correct result)

Bias and Variance



• It comes down to overfitting vs underfitting your data

Often you need to choose between bias and variance



• Bias and variance both contribute to error
▫ 𝐸𝑟𝑟𝑜𝑟 = 𝐵𝑖𝑎𝑠2 + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

• But it’s error you want to minimize, not bias or variance specifically

• A complex model will have high variance and low bias

• A too-simple model will have low variance and high bias

• But both may have the same error – the optimal complexity is in the 
middle

But what you really care about is error



• Increasing K in K-Nearest-Neighbors decreases variance and increases 
bias (by averaging together more neighbors)

• A single decision tree is prone to overfitting – high variance
▫ But a random forest decreases that variance. 

Tying it to earlier lessons





Using K-Fold Cross Validation

Avoiding Overfitting



• One way to further protect against overfitting is K-fold cross validation

• Sounds complicated. But it’s a simple idea:
▫ Split your data into K randomly-assigned segments

▫ Reserve one segment as your test data

▫ Train on each of the remaining K-1 segments and measure their 
performance against the test set

▫ Take the average of the K-1 r-squared scores

• Prevents you from overfitting to a single train/test split

Review: K-Fold Cross Validation



• Scikit-learn makes this really easy. Even easier than just a single 
train/test split.

• In practice, you need to try different variations of your model and 
measure the mean accuracy using K-Fold Cross validation until you find 
a sweet spot

Using K-Fold Cross Validation



• Use K-Fold Cross Validation with a SVC model of Iris classification.
We’ll see that without K-Fold, we could overfit the model.

Let’s Play





Cleaning Your Data



• The reality is, much of your time as a data 
scientist will be spent preparing and “cleaning” 
your data
▫ Outliers
▫ Missing Data
▫ Malicious Data
▫ Erroneous Data
▫ Irrelevant Data
▫ Inconsistent Data
▫ Formatting

Cleaning your Data



• Look at your data! Examine it!

• Question your results!
▫ And always do this – not just when you 

don’t get a result that you like!

Garbage In, Garbage Out



• All I want is the most-popular pages on my 
non-profit news website.

• How hard can that be?

Let’s analyze some web log data.





Normalizing Numerical Data



• If your model is based on several numerical attributes – are they 
comparable?
▫ Example: ages may range from 0-100, and incomes from 0-billions

▫ Some models may not perform well when different attributes are on very 
different scales

▫ It can result in some attributes counting more than others

▫ Bias in the attributes can also be a problem.

The importance of normalizing data



• Scikit-learn’s PCA implementation has a “whiten” option that does this 
for you. Use it.

• Scikit-learn has a preprocessing module with handy normalize and scale 
functions

• Your data may have “yes” and “no” that needs to be converted to “1” 
and “0”

Examples



• Most data mining and machine learning techniques work fine with raw, 
un-normalized data

• But double check the one you’re using before you start.

• Don’t forget to re-scale your results when you’re done!

Read the docs





Dealing with Outliers



• Sometimes it’s appropriate to remove outliers from your 
training data

• Do this responsibly! Understand why you are doing this.
• For example: in collaborative filtering, a single user who 

rates thousands of movies could have a big effect on 
everyone else’s ratings. That may not be desirable.

• Another example: in web log data, outliers may represent 
bots or other agents that should be discarded.

• But if someone really wants the mean income of US 
citizens for example, don’t toss out Donald Trump just 
because you want to.

Dealing with Outliers



• Our old friend standard deviation provides a principled way to classify 
outliers.

• Find data points more than some multiple of a standard deviation in 
your training data.

• What multiple? You just have to use common sense.

Dealing with Outliers



Let’s play with some data.





Installing Apache Spark on Windows



• Install a JDK

• Install Python (but you should already have this)

• Install a pre-built version of Spark for Hadoop

• Create a conf/log4j.properties file to change the warning level

• Add a SPARK_HOME environment variable

• Add %SPARK_HOME%\bin to your PATH

• Set HADOOP_HOME to c:\winutils

• Install winutils.exe to c:\winutils\bin

Installing Spark on Windows



• Pretty much the same, but look up how to set environment variables on 
your OS

• Winutils.exe not needed of course

Installing Spark on other OS’s



Let’s Do It





Spark Introduction



• "A fast and general engine for large-scale data processing"

What is Spark?



It’s Scalable

Driver Program
-Spark Context

Cluster Manager
(Spark, YARN)

Executor
- Cache

-Tasks

Executor
- Cache

-Tasks

Executor
- Cache

-Tasks

...



• "Run programs up to 100x faster than Hadoop MapReduce 

in memory, or 10x faster on disk."

• DAG Engine (directed acyclic graph) optimizes workflows

It’s Fast



• Amazon

• Ebay: log analysis and aggregation

• NASA JPL: Deep Space Network

• Groupon

• TripAdviser

• Yahoo

• Many others: 

https://cwiki.apache.org/confluence/display/SPARK/Power

ed+By+Spark

It’s Hot



• Code in Python, Java, or Scala

• Built around one main concept: the Resilient Distributed Dataset (RDD)

It’s Not That Hard



Components of Spark

Spark Streaming Spark SQL MLLib GraphX

SPARK CORE



• Why Python?

▫ No need to compile, manage dependencies, etc.

▫ Less coding overhead

▫ You already know Python

▫ Lets us focus on the concepts instead of a new language

• But...

▫ Scala is probably a more popular choice with Spark.

▫ Spark is built in Scala, so coding in Scala is "native" to Spark

▫ New features, libraries tend to be Scala-first.

Python vs. Scala



• Python and Scala look very similar in Spark.

Fear Not

Python code to square numbers in a data set:

nums = sc.parallelize([1, 2, 3, 4])

squared = nums.map(lambda x: x * x).collect()

Scala code to square numbers in a data set:

val nums = sc.parallelize(List(1, 2, 3, 4))

val squared = nums.map(x => x * x).collect()





Resilient Distributed Datasets (RDDs)



• Resilient

• Distributed

• Dataset

RDD



• Created by your driver program

• Is responsible for making RDD's resilient and distributed!

• Creates RDD's

• The Spark shell creates a "sc" object for you

The SparkContext



• nums = parallelize([1, 2, 3, 4])
• sc.textFile("file:///c:/users/frank/gobs-o-text.txt")

▫ or s3n:// , hdfs://

• hiveCtx = HiveContext(sc)   rows = hiveCtx.sql("SELECT name, age FROM 
users")

• Can also create from:
▫ JDBC
▫ Cassandra
▫ HBase
▫ Elastisearch
▫ JSON, CSV, sequence files, object files, various compressed formats

Creating RDD’s



• map

• flatmap

• filter

• distinct

• sample

• union, intersection, subtract, cartesian

Transforming RDD’s



• rdd = sc.parallelize([1, 2, 3, 4])

• rdd.map(lambda x: x*x)

• This yields 1, 4, 9, 16

Map() example



• Many RDD methods accept a function as a parameter

• rdd.map(lambda x: x*x)

• Is the same thing as

• def squareIt(x):
• return x*x

• rdd.map(squareIt)

• There, you now understand functional programming.

What’s that lambda thing?



• collect

• count

• countByValue

• take

• top

• reduce

• … and more ...

RDD Actions



• Nothing actually happens in your driver program until an action is 
called!

Lazy Evaluation





Introducing MLLib



• Feature extraction
▫ Term Frequency / Inverse Document Frequency useful for search

• Basic statistics
▫ Chi-squared test, Pearson or Spearman correlation, min, max, mean, variance

• Linear regression, logistic regression
• Support Vector Machines
• Naïve Bayes classifier
• Decision trees
• K-Means clustering
• Principal component analysis, singular value decomposition
• Recommendations using Alternating Least Squares

Some MLLib Capabilities



• Vector (dense or sparse)

• LabeledPoint

• Rating

Special MLLib Data Types





TF-IDF



• Stands for Term Frequency and Inverse Document Frequency

• Important data for search – figures out what terms are most relevant for 
a document

• Sounds fancy!

TF-IDF



• Term Frequency just measures how often a word occurs in a document
▫ A word that occurs frequently is probably important to that document’s 

meaning

• Document Frequency is how often a word occurs in an entire set of 
documents, i.e., all of Wikipedia or every web page
▫ This tells us about common words that just appear everywhere no matter 

what the topic, like “a”, “the”, “and”, etc.

TF-IDF Explained



• So a measure of the relevancy of a word to a document might be:

𝑇𝑒𝑟𝑚 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

Or: Term Frequency * Inverse Document Frequency

That is, take how often the word appears in a document, over how often 
it just appears everywhere. That gives you a measure of how important 
and unique this word is for this document

TF-IDF Explained



• We actually use the log of the IDF, since word frequencies are 
distributed exponentially. That gives us a better weighting of a words 
overall popularity

• TF-IDF assumes a document is just a “bag of words”
▫ Parsing documents into a bag of words can be most of the work
▫ Words can be represented as a hash value (number) for efficiency
▫ What about synonyms? Various tenses? Abbreviations? Capitalizations? 

Misspellings?

• Doing this at scale is the hard part
▫ That’s where Spark comes in!

TF-IDF In Practice



• A very simple search algorithm could be:
▫ Compute TF-IDF for every word in a corpus

▫ For a given search word, sort the documents by their TF-IDF score for that 
word

▫ Display the results

Using TF-IDF



Let’s use TF-IDF on Wikipedia





A/B Tests



• A controlled experiment, usually in the context of a website

• You test the performance of some change to your website (the variant) 
and measure conversion relative to your unchanged site (the control.)

What is an A/B test?



• Design changes

• UI flow

• Algorithmic changes

• Pricing changes

• You name it

What sorts of things can you test?



• Ideally choose what you are trying to influence
▫ Order amounts

▫ Profit

▫ Ad clicks

▫ Order quantity

• But attributing actions downstream from your change can be hard
▫ Especially if you’re running more than one experiment

How do you measure conversion



• Common mistake:
▫ Run a test for some small period of time that results in a few purchases to 

analyze

▫ You take the mean order amount from A and B, and declare victory or 
defeat

▫ But, there’s so much random variation in order amounts to begin with, that 
your result was just based on chance.

▫ You then fool yourself into thinking some change to your website, which 
could actually be harmful, has made tons of money.

Variance is your Enemy



• Sometimes you need to also look at conversion metrics with less 
variance

• Order quantities vs. order dollar amounts, for example

Variance is your Enemy





T-Tests and P-Values



• So, how do we know if a result is likely to be “real” as opposed to just 
random variation?

• T-tests and P-values

Determining significance



• A measure of the difference between the two sets expressed in units of 
standard error

• The size of the difference relative to the variance in the data

• A high t value means there's probably a real difference between the two 
sets

• Assumes a normal distribution of behavior
▫ This is a good assumption if you’re  measuring revenue as conversion

▫ See also: Fisher’s exact test (for clickthrough rates), E-test (for transactions 
per user) and chi-squared test (for product quantities purchased)

The T-Statistic



• Think of it as the probability of A and B satisfying the “null hypothesis”

• So, a low P-Value implies significance.

• It is the probability of an observation lying at an extreme t-value 
assuming the null hypothesis

The P-Value



• Choose some threshold for “significance” before your experiment
▫ 1%? 5%?

• When your experiment is over:
▫ Measure your P-value

▫ If it’s less than your significance threshold, then you can reject the null 
hypothesis
 If it’s a positive change, roll it out

 If it’s a negative change, discard it before you lose more money.

Using P-values



Let’s work through an example.





How Long Do I Run an Experiment?



• You have achieved significance (positive or negative)

• You no longer observe meaningful trends in your p-value
▫ That is, you don’t see any indication that your experiment will “converge” 

on a result over time

• You reach some pre-established upper bound on time

How do I know when I’m done with an A/B test?





A/B Test Gotchas



• Even your low p-value score on a well-designed experiment does not 
imply causation!
▫ It could still be random chance

▫ Other factors could be at play

▫ It’s your duty to ensure business owners understand this

Correlation does not imply causation



• Changes to a website will catch the attention of previous users who are 
used to the way it used to be
▫ They might click on something simply because it is new

▫ But this attention won’t last forever

• Good idea to re-run experiments much later and validate their impact
▫ Often the “old” website will outperform the “new” one after awhile, simply 

because it is a change

Novelty Effects



• An experiment run over a short period of time 
may only be valid for that period of time
▫ Example: Consumer behavior near Christmas is 

very different than other times of year

▫ An experiment run near Christmas may not 
represent behavior during the rest of the year

Seasonal Effects



• Sometimes your random selection of customers for A or B isn’t really 
random
▫ For example: assignment is based somehow on customer ID

▫ But customers with low ID’s are better customers than ones with high ID’s

• Run an A/A test periodically to check

• Audit your segment assignment algorithms

Selection Bias



• Are robots (both self-identified and malicious) 
affecting your experiment?
▫ Good reason to measure conversion based on 

something that requires spending real money

• More generally, are outliers skewing the result?

Data Pollution



• Often there are errors in how conversion is attributed to an experiment

• Using a widely used A/B test platform can help mitigate that risk
▫ If your is home-grown, it deserves auditing

• Watch for “gray areas”
▫ Are you counting purchases toward an experiment within some given time-

frame of exposure to it? Is that time too large?

▫ Could other changes downstream from the change you’re measuring affect 
your results?

▫ Are you running multiple experiments at once?

Attribution Errors



Understanding gradient descent, autodiff, and 
softmax

Deep Learning: Pre-Requisites



Gradient Descent



• Gradient descent requires knowledge of, well, the gradient from your 
cost function (MSE)

• Mathematically we need the first partial derivatives of all the inputs
▫ This is hard and inefficient if you just throw calculus at the problem

• Reverse-mode autodiff to the rescue!
▫ Optimized for many inputs + few outputs (like a neuron)

▫ Computes all partial derivatives in # of outputs + 1 graph traversals

▫ Still fundamentally a calculus trick – it’s complicated but it works

▫ This is what Tensorflow uses

autodiff



• Used for classification
▫ Given a score for each class

▫ It produces a probability of each class

▫ The class with the highest probability is the “answer” you get

softmax

x is a vector of input values
theta is a vector of weights



• Gradient descent is an algorithm for minimizing error over multiple 
steps

• Autodiff is a calculus trick for finding the gradients in gradient descent

• Softmax is a function for choosing the most probable classification given 
several input values

In review:



Evolving beyond nature

Introducing Artificial Neural Networks



• Neurons in your cerebral cortex are 
connected via axons

• A neuron “fires” to the neurons it’s 
connected to, when enough of its input 
signals are activated.

• Very simple at the individual neuron 
level – but layers of neurons connected 
in this way can yield learning behavior.

• Billions of neurons, each with 
thousands of connections, yields a 
mind

The biological inspiration



• Neurons in your cortex seem to be 
arranged into many stacks, or “columns” 
that process information in parallel

• “mini-columns” of around 100 neurons 
are organized into larger “hyper-
columns”. There are 100 million mini-
columns in your cortex

• This is coincidentally similar to how 
GPU’s work…

Cortical columns

(credit: Marcel Oberlaender et al.)



• 1943!!

The first artificial neurons

A B

C An artificial neuron “fires” if more than N 
input connections are active.

Depending on the number of connections 
from each input neuron, and whether a 
connection activates or suppresses a neuron, 
you can construct AND, OR, and NOT logical 
constructs this way.

This example would implement C = A OR B if the threshold is 2 inputs being active.



• 1957!

• Adds weights to the 
inputs; output is given by 
a step function

The Linear Threshold Unit (LTU)

Weight 1 Weight 2

Σ

Input 1 Input 2

Sum up the products of 
the inputs and their 
weights
Output 1 if sum is >= 0



• A layer of LTU’s

• A perceptron can learn by 
reinforcing weights that lead 
to correct behavior during 
training

• This too has a biological basis 
(“cells that fire together, wire 
together”)

The Perceptron

Σ ΣΣ

Weight 1 Weight 2
Bias 

Neuron 
(1.0)

Input 1 Input 2



• Addition of “hidden layers”

• This is a Deep Neural 
Network

• Training them is trickier –
but we’ll talk about that.

Multi-Layer Perceptrons

Σ ΣΣ

Weight 1 Weight 2
Bias 

Neuron 
(1.0)

Input 1 Input 2

Σ

Σ ΣΣ



• Replace step activation 
function with something 
better

• Apply softmax to the 
output

• Training using gradient 
descent

A Modern Deep Neural Network

Σ ΣΣ

Weight 1 Weight 2
Bias 

Neuron 
(1.0)

Input 1 Input 2

Σ

Σ ΣΣ

Softmax

Bias 
Neuron 

(1.0)



playground.tensorflow.org

Let’s play



Constructing, training, and tuning multi-layer 
perceptrons

Deep Learning



• How do you train a MLP’s weights? How does it 
learn?

• Backpropagation… or more specifically:
Gradient Descent using reverse-mode autodiff!

• For each training step:
▫ Compute the output error
▫ Compute how much each neuron in the previous 

hidden layer contributed
▫ Back-propagate that error in a reverse pass
▫ Tweak weights to reduce the error using gradient 

descent

Backpropagation



• Step functions don’t work with gradient descent 
– there is no gradient!
▫ Mathematically, they have no useful derivative.

• Alternatives: 
▫ Logistic function
▫ Hyperbolic tangent function
▫ Exponential linear unit (ELU)
▫ ReLU function (Rectified Linear Unit)

• ReLU is common. Fast to compute and works 
well.
▫ Also: “Leaky ReLU”, “Noisy ReLU”
▫ ELU can sometimes lead to faster learning 

though.

Activation functions (aka rectifier)

ReLU function



• There are faster (as in faster learning) optimizers than gradient descent
▫ Momentum Optimization

 Introduces a momentum term to the descent, so it slows down as things start to flatten and speeds up as the slope 
is steep

▫ Nesterov Accelerated Gradient
 A small tweak on momentum optimization – computes momentum based on the gradient slightly ahead of you, not 

where you are
▫ RMSProp

 Adaptive learning rate to help point toward the minimum
▫ Adam

 Adaptive moment estimation – momentum + RMSProp combined
 Popular choice today, easy to use

Optimization functions



• With thousands of weights to tune, overfitting is a 
problem

• Early stopping (when performance starts dropping)

• Regularization terms added to cost function during 
training

• Dropout – ignore say 50% of all neurons randomly at 
each training step
▫ Works surprisingly well!

▫ Forces your model to spread out its learning

Avoiding Overfitting



• Trial & error is one way
▫ Evaluate a smaller network with less neurons in 

the hidden layers
▫ Evaluate a larger network with more layers

 Try reducing the size of each layer as you progress –
form a funnel

• More layers can yield faster learning
• Or just use more layers and neurons than you 

need, and don’t care because you use early 
stopping.

• Use “model zoos”

Tuning your topology



Tensorflow



• It’s not specifically for neural networks– it’s more generally an 
architecture for executing a graph of numerical operations

• Tensorflow can optimize the processing of that graph, and distribute its 
processing across a network
▫ Sounds a lot like Apache Spark, eh?

• It can also distribute work across GPU’s!
▫ Can handle massive scale – it was made by Google

• Runs on about anything

• Highly efficient C++ code with easy to use Python API’s

Why Tensorflow?



• Install with pip install tensorflow or 
pip install tensorflow-gpu

• A tensor is just a fancy name for an 
array or matrix of values

• To use Tensorflow, you:
▫ Construct a graph to compute your 

tensors
▫ Initialize your variables
▫ Execute that graph – nothing actually 

happens until then

Tensorflow basics

import tensorflow as tf

a = tf.Variable(1, name="a")

b = tf.Variable(2, name="b")

f = a + b

init = tf.global_variables_initializer()

with tf.Session() as s:

init.run()

print( f.eval() )

World’s simplest Tensorflow app:



• Mathematical insights:
▫ All those interconnected arrows multiplying 

weights can be thought of as a big matrix 
multiplication

▫ The bias term can just be added onto the 
result of that matrix multiplication

• So in Tensorflow, we can define a layer of a 
neural network as:
output = 
tf.matmul(previous_layer, 
layer_weights) + layer_biases

• By using Tensorflow directly we’re kinda
doing this the “hard way.”

Creating a neural network with Tensorflow
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• Load up our training and testing data
• Construct a graph describing our neural network
▫ Use placeholders for the input data and target labels

 This way we can use the same graph for training and testing!

▫ Use variables for the learned weights for each connection 
and learned biases for each neuron
 Variables are preserved across runs within a Tensorflow

session

• Associate an optimizer (ie gradient descent) to the 
network

• Run the optimizer with your training data
• Evaluate your trained network with your testing data

Creating a neural network with Tensorflow



• Neural networks usually work best if your input data is normalized.
▫ That is, 0 mean and unit variance

▫ The real goal is that every input feature is comparable in terms of 
magnitude

• scikit_learn’s StandardScaler can do this for you

• Many data sets are normalized to begin with – such as the one we’re 
about to use.

Make sure your features are normalized



Let’s try it out



Keras



• Easy and fast prototyping
▫ Available as a higher-level API in 

Tensorflow 1.9+

▫ scikit_learn integration

▫ Less to think about – which often 
yields better results without even 
trying

▫ This is really important! The faster 
you can experiment, the better 
your results.

Why Keras?



Let’s dive in: MNIST with Keras



• MNIST is an example of multi-class classification.

Example: multi-class classification

model = Sequential()

model.add(Dense(64, activation='relu', input_dim=20)) 
model.add(Dropout(0.5)) 
model.add(Dense(64, activation='relu')) 
model.add(Dropout(0.5)) 
model.add(Dense(10, activation='softmax')) 
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, 

nesterov=True) 
model.compile(loss='categorical_crossentropy', 

optimizer=sgd, metrics=['accuracy'])



Example: binary classification

model = Sequential() 
model.add(Dense(64, input_dim=20, activation='relu')) 
model.add(Dropout(0.5)) 
model.add(Dense(64, activation='relu')) 
model.add(Dropout(0.5)) 
model.add(Dense(1, activation='sigmoid')) 
model.compile(loss='binary_crossentropy', optimizer='rmsprop', 

metrics=['accuracy'])



from tensorflow.keras.wrappers.scikit_learn import KerasClassifier

def create_model():
model = Sequential()
model.add(Dense(6, input_dim=4, kernel_initializer='normal', activation='relu'))
model.add(Dense(4, kernel_initializer='normal', activation='relu'))
model.add(Dense(1, kernel_initializer='normal', activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model

estimator = KerasClassifier(build_fn=create_model, epochs, verbose=0)

cv_scores = cross_val_score(estimator, features, labels, cv=10)
print(cv_scores.mean())

Integrating Keras with scikit_learn



Let’s try it out: predict political parties with Keras



Convolutional Neural Networks



• When you have data that doesn’t neatly align 
into columns
▫ Images that you want to find features within
▫ Machine translation
▫ Sentence classification
▫ Sentiment analysis

• They can find features that aren’t in a specific 
spot
▫ Like a stop sign in a picture
▫ Or words within a sentence

• They are “feature-location invariant”

CNN’s: what are they for?



• Inspired by the biology of the visual cortex
▫ Local receptive fields are groups of neurons that only respond to a part of 

what your eyes see (subsampling)

▫ They overlap each other to cover the entire visual field (convolutions)

▫ They feed into higher layers that identify increasingly complex images
 Some receptive fields identify horizontal lines, lines at different angles, etc. 

(filters)

 These would feed into a layer that identifies shapes

 Which might feed into a layer that identifies objects

▫ For color images, extra layers for red, green, and blue

CNN’s: how do they work?



• Individual local receptive fields scan the image 
looking for edges, and pick up the edges of the 
stop sign in a layer

• Those edges in turn get picked up by a higher 
level convolution that identifies the stop sign’s 
shape (and letters, too)

• This shape then gets matched against your 
pattern of what a stop sign looks like, also using 
the strong red signal coming from your red layers

• That information keeps getting processed 
upward until your foot hits the brake!

• A CNN works the same way

How do we “know” that’s a stop sign?



• Source data must be of appropriate dimensions
▫ ie width x length x color channels

• Conv2D layer type does the actual convolution on a 2D image
▫ Conv1D and Conv3D also available – doesn’t have to be image data

• MaxPooling2D layers can be used to reduce a 2D layer down by taking the 
maximum value in a given block

• Flatten layers will convert the 2D layer to a 1D layer for passing into a flat 
hidden layer of neurons

• Typical usage: 
▫ Conv2D -> MaxPooling2D -> Dropout -> Flatten -> Dense -> Dropout -> Softmax

CNN’s with Keras



• Very resource-intensive (CPU, GPU, and 
RAM)

• Lots of hyperparameters
▫ Kernel sizes, many layers with different 

numbers of units, amount of pooling… in 
addition to the usual stuff like number of 
layers, choice of optimizer

• Getting the training data is often the 
hardest part! (As well as storing and 
accessing it)

CNN’s are hard



• Defines specific arrangement of layers, padding, and hyperparameters
• LeNet-5
▫ Good for handwriting recognition

• AlexNet
▫ Image classification, deeper than LeNet

• GoogLeNet
▫ Even deeper, but with better performance
▫ Introduces inception modules (groups of convolution layers)

• ResNet (Residual Network)
▫ Even deeper – maintains performance via skip connections.

Specialized CNN architectures



Let’s try it out



Recurrent Neural Networks



• Time-series data
▫ When you want to predict future behavior based on 

past behavior

▫ Web logs, sensor logs, stock trades

▫ Where to drive your self-driving car based on past 
trajectories

• Data that consists of sequences of arbitrary length
▫ Machine translation

▫ Image captions

▫ Machine-generated music

RNN’s: what are they for?



A Recurrent Neuron
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A Layer of Recurrent Neurons
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• Sequence to sequence
▫ i.e., predict stock prices based on 

series of historical data

• Sequence to vector
▫ i.e., words in a sentence to 

sentiment

• Vector to sequence
▫ i.e., create captions from an image

• Encoder -> Decoder
▫ Sequence -> vector -> sequence
▫ i.e., machine translation

RNN Topologies



• Backpropagation through time
▫ Just like backpropagation on MLP’s, but applied to each time step.

• All those time steps add up fast
▫ Ends up looking like a really, really deep neural network.

▫ Can limit backpropagation to a limited number of time steps (truncated 
backpropagation through time)

Training RNN’s



• State from earlier time steps get diluted over 
time
▫ This can be a problem, for example when 

learning sentence structures
• LSTM Cell
▫ Long Short-Term Memory Cell
▫ Maintains separate short-term and long-term 

states
• GRU Cell
▫ Gated Recurrent Unit
▫ Simplified LSTM Cell that performs about as 

well

Training RNN’s



• It’s really hard
▫ Very sensitive to topologies, choice 

of hyperparameters

▫ Very resource intensive

▫ A wrong choice can lead to a RNN 
that doesn’t converge at all.

Training RNN’s



Let’s run an example.



The Ethics of Deep Learning



• Accuracy doesn’t tell the whole story
• Type 1: False positive
▫ Unnecessary surgery
▫ Slam on the brakes for no reason

• Type 2: False negative
▫ Untreated conditions
▫ You crash into the car in front of you

• Think about the ramifications of different types of errors from your 
model, tune it accordingly

Types of errors



• Just because your model isn’t human 
doesn’t mean it’s inherently fair

• Example: train a model on what sort 
of job applicants get hired, use it to 
screen resumes
▫ Past biases toward gender / age / 

race will be reflected in your model, 
because it was reflected in the data 
you trained the model with.

Hidden biases



• Don’t oversell the capabilities of an algorithm in your excitement

• Example: medical diagnostics that are almost, but not quite, as good as 
a human doctor

• Another example: self-driving cars that can kill people

Is it really better than a human?



• Gather ‘round the fire while Uncle Frank tells you a story.

Unintended applications of your research



Learning More about Deep Learning



Learning more



Final Project



• Predict if a mass detected in a mammogram is benign or malignant, 
using the best supervised machine learning model you can find.

Your Assignment


