
elasticsearch

sundog-education.com

elasticsearch
getting set up

page
02

Install
Ubuntu

Install
Virtualbox

Install
Elasticsearch

sundog-education.com

elasticsearch
system requirements

page
03

enable virtualization

Virtualization must be enabled in your BIOS settings. If
you have “Hyper-V” virtualization as an option, turn it
off.

beware avast

Avast anti-virus is known to conflict with Virtualbox.

let’s do
this.

elasticsearch
basics.

sundog-education.com

logical concepts of
elasticsearch

page
07

Documents are the things
you’re searching for. They can

be more than text – any
structured JSON data works.
Every document has a unique

ID, and a type.

documents indices

An index powers search into all
documents within a collection
of types. They contain inverted

indices that let you search
across everything within them

at once.

A type defines the schema and
mapping shared by documents
that represent the same sort of

thing. (A log entry, an
encyclopedia article, etc.)

types

sundog-education.com

what is an
inverted index

page
08

Document 1:
Space: The final frontier. These are the
voyages…

Document 2:
He’s bad, he’s number one. He’s the space
cowboy with the laser gun!

Inverted index

space: 1, 2
the: 1, 2
final: 1
frontier: 1
he: 2
bad: 2
…

sundog-education.com

of course it’s not
quite that simple.

page
09

TF-IDF means Term Frequency * Inverse Document Frequency

Term Frequency is how often a term appears in a given document

Document Frequency is how often a term appears in all documents

Term Frequency / Document Frequency measures the relevance
of a term in a document

sundog-education.com

using
indices

page
010

Most languages have
specialized Elasticsearch
libraries to make it even easier.

client API’s

Web-based graphical UI’s such
as Kibana let you interact with
your indices and explore them
without writing code.

analytic tools

Elasticsearch fundamenatally
works via HTTP requests and
JSON data. Any language or
tool that can handle HTTP can
use Elasticsearch.

RESTful API

how
elasticsearch

scales

sundog-education.com

an index is split into
shards.

page
013

1 2 3 …

Shakespeare

Documents are hashed to a particular shard.

Each shard may be on a different node in a cluster.
Every shard is a self-contained Lucene index of its own.

sundog-education.com

primary and replica
shards

page
014

Primary
1

Replica
0

Node 1

Replica
0

Replica
1

Node 2

Primary
0

Replica
1

Node 3

This index has two primary shards and two replicas.
Your application should round-robin requests amongst nodes.

Write requests are routed to the primary shard, then replicated
Read requests are routed to the primary or any replica

sundog-education.com

The number of primary shards
cannot be changed later.

page
015

PUT /testindex
{
"settings": {
"number_of_shards": 3
, "number_of_replicas": 1

}
}

Not as bad as it sounds – you can add
more replica shards for more read
throughput.

Worst case you can re-index your data.

The number of shards can be set up front
via a PUT command via REST / HTTP

quiz time

01

The schema for
your documents
are defined by…

• The index
• The type
• The document itself

01

The schema for
your documents
are defined by…

• The index
• The type
• The document itself

02

What purpose do
inverted indices serve?

• They allow you search phrases in reverse
order

• They quickly map search terms to documents
• They load balance search requests across

your cluster

02

What purpose do
inverted indices serve?

• They allow you search phrases in reverse
order

• They quickly map search terms to documents
• They load balance search requests across

your cluster

03

An index configured for 5 primary
shards and 3 replicas would have
how many shards in total?

• 8
• 15
• 20

03

An index configured for 5 primary
shards and 3 replicas would have
how many shards in total?

• 8
• 15
• 20

04

Elasticsearch is built
only for full-text search

of documents.

• true
• false

04

Elasticsearch is built
only for full-text search

of documents.

• true
• false

connecting to
your cluster

sundog-education.com

elasticsearch
more setup

page
028

Install
PuTTY (Windows)

Install openssh-
server

Connect to your
“cluster”

examining
movielens

movielens

movielens is a free dataset
of movie ratings gathered
from movielens.org.

It contains user ratings,
movie metadata, and user
metadata.

Let’s download and examine
the data files from
movielens.org

creating
mappings

sundog-education.com

what is a mapping?

page
034

curl -XPUT 127.0.0.1:9200/movies -d '

{

"mappings": {

"movie": {

"_all": {"enabled": false},

"properties" : {

"year" : {“type": "date"}

}

}

}

}'

a mapping is a schema definition.
elasticsearch has reasonable defaults, but sometimes you need to customize them.

sundog-education.com

common
mappings

page
035

do you want this field indexed
for full-text search? analyzed /
not_analyzed / no

“properties”: {

“genre” : {

“index”: “not_analyzed”

}

}

field index
define your tokenizer and token
filter. standard / whitespace /
simple / english etc.

“properties”: {

“description” : {

“analyzer”: “english”

}

}

field analyzer
string, byte, short, integer, long,
float, double, boolean, date

“properties”: {

“user_id” : {

“type”: “long”

}

}

field types

sundog-education.com

more about
analyzers

page
036

character filters
remove HTML encoding, convert & to and

tokenizer
split strings on whitespace / punctuation / non-letters

token filter
lowercasing, stemming, synonyms, stopwords

sundog-education.com

choices for
analyzers

page
037

standard
splits on word boundaries, removes punctuation,
lowercases. good choice if language is unknown

simple
splits on anything that isn’t a letter, and lowercases

whitespace
splits on whitespace but doesn’t lowercase

language (i.e. english)
accounts for language-specific stopwords and
stemming

import
one document

insert

curl -XPUT
127.0.0.1:9200/movies/movie/109487 -d '

{
"genre" : ["IMAX","Sci-Fi"],
"title" : "Interstellar",
"year" : 2014
}'

import
many

documents

sundog-education.com

json bulk import

page
043

{ "create" : { "_index" : "movies", "_type" : "movie", "_id" : "135569" } }

{ "id": "135569", "title" : "Star Trek Beyond", "year":2016 , "genre":["Action", "Adventure", "Sci-Fi"] }

{ "create" : { "_index" : "movies", "_type" : "movie", "_id" : "122886" } }

{ "id": "122886", "title" : "Star Wars: Episode VII - The Force Awakens", "year":2015 , "genre":["Action", "Adventure", "Fantasy", "Sci-Fi", "IMAX"] }

{ "create" : { "_index" : "movies", "_type" : "movie", "_id" : "109487" } }

{ "id": "109487", "title" : "Interstellar", "year":2014 , "genre":["Sci-Fi", "IMAX"] }

{ "create" : { "_index" : "movies", "_type" : "movie", "_id" : "58559" } }

{ "id": "58559", "title" : "Dark Knight, The", "year":2008 , "genre":["Action", "Crime", "Drama", "IMAX"] }

{ "create" : { "_index" : "movies", "_type" : "movie", "_id" : "1924" } }

{ "id": "1924", "title" : "Plan 9 from Outer Space", "year":1959 , "genre":["Horror", "Sci-Fi"] } ‘

curl -XPUT 127.0.0.1:9200/_bulk –d ‘

updating
documents

sundog-education.com

versions

page
046

Every document has a _version field
Elasticsearch documents are immutable.
When you update an existing document:

a new document is created with an incremented _version
the old document is marked for deletion

sundog-education.com

partial update api

page
047

curl -XPOST 127.0.0.1:9200/movies/movie/109487/_update -d '
{

"doc": {
"title": "Interstellar"

}
}'

deleting
documents

sundog-education.com

it couldn’t be
easier.

Just use the DELETE method:

curl -XDELETE 127.0.0.1:9200/movies/movie/58559

sundog-education.com

elasticsearch

page
051

insert, update, and then delete a movie
of your choice into the movies index!exercise

dealing with
concurrency

sundog-education.com

the problem

page
054

Get view
count for

page

Get view
count for

page

10

10

Increment
view count

for page

Increment
view count

for page

11

11

But it should be 12!

sundog-education.com

optimistic
concurrency control

page
055

Get view
count for

page

Get view
count for

page

10
_version: 9

10
_version: 9

Increment for
_version=9

Increment for
_version=9

11

Error!
Try

again.

Use retry_on_conflicts=N to automatically retry.

controlling
full-text search

sundog-education.com

using analyzers

page
058

sometimes text fields should be exact-match
• use no_analyzer mapping

search on analyzed fields will return anything
remotely relevant

• depending on the analyzer, results will be
case-insensitive, stemmed, stopwords
removed, synonyms applied, etc.

• searches with multiple terms need not
match them all

data
modeling

sundog-education.com

strategies for
relational data

page
061

RATING
userID

movieID
rating

MOVIE
movieID

title
genres

normalized data

Look
up

rating

Look
up title

Minimizes storage space, makes it easy to change titles
But requires two queries, and storage is cheap!

sundog-education.com

strategies for
relational data

page
062

RATING
userID
rating
title

Look
up

rating

denormalized data

titles are duplicated, but only one query

sundog-education.com

strategies for
relational data

page
063

Star Wars

A New Hope
Empire

Strikes Back
Return of the

Jedi
The Force
Awakens

Parent / Child Relationship

query-line
search

sundog-education.com

“query lite”

page
066

/movies/movie/_search?q=title:star

/movies/movie/_search?q=+year:>2010+title:trek

sundog-education.com

it’s not always
simpler.

page
067

spaces etc. need to be URL encoded.

/movies/movie/_search?q=%2Byear%3A%3E2010+%2Btitle%3Atrek

/movies/movie/_search?q=+year:>2010+title:trek

sundog-education.com

and it can be
dangerous.

page
068

• cryptic and tough to debug
• can be a security issue if exposed to end users
• fragile – one wrong character and you’re hosed.

But it’s handy for quick experimenting.

learn more.

this is formally called “URI
Search”. Search for that on
the Elasticsearch
documentation.

it’s really quite powerful,
but again is only
appropriate for quick “curl
tests”.

request body
search

sundog-education.com

request body
search

page
072

how you’re supposed to do it

query DSL is in the request body as JSON
(yes, a GET request can have a body!)

curl -XGET 127.0.0.1:9200/movies/movie/_search?pretty -d '
{

"query": {
"match": {

"title": "star"
}

}
}'

sundog-education.com

queries and filters

page
073

filters ask a yes/no question of your data
queries return data in terms of relevance

use filters when you can – they are faster and cacheable.

sundog-education.com

example: boolean
query with a filter

page
074

curl -XGET 127.0.0.1:9200/movies/movie/_search?pretty -d'

{

"query":{

"bool": {

"must": {"term": {"title": "trek"}},

"filter": {"range": {"year": {"gte": 2010}}}

}

}

}'

sundog-education.com

some types of
filters

page
075

term: filter by exact values
{“term”: {“year”: 2014}}

terms: match if any exact values in a list match
{“terms”: {“genre”: [“Sci-Fi”, “Adventure”] } }

range: Find numbers or dates in a given range (gt, gte, lt, lte)
{“range”: {“year”: {“gte”: 2010}}}

exists: Find documents where a field exists
{“exists”: {“field”: “tags”}}

missing: Find documents where a field is missing
{“missing”: {“field”: “tags”}}

bool: Combine filters with Boolean logic (must, must_not, should)

sundog-education.com

some types of
queries

page
076

match_all: returns all documents and is the default. Normally used with a filter.
{“match_all”: {}}

match: searches analyzed results, such as full text search.
{“match”: {“title”: “star”}}

multi_match: run the same query on multiple fields.
{“multi_match”: {“query”: “star”, “fields”: [“title”, “synopsis”] } }

bool: Works like a bool filter, but results are scored by relevance.

sundog-education.com

syntax reminder

page
077

queries are wrapped in a “query”: { } block,
filters are wrapped in a “filter”: { } block.

you can combine filters inside queries, or queries inside filters too.

curl -XGET 127.0.0.1:9200/movies/movie/_search?pretty -d'

{

"query":{

"bool": {

"must": {"term": {"title": "trek"}},

"filter": {"range": {"year": {"gte": 2010}}}

}

}

}'

phrase
search

sundog-education.com

phrase matching

page
080

curl -XGET 127.0.0.1:9200/movies/movie/_search?pretty -d '

{

"query": {

"match_phrase": {

"title": "star wars"

}

}

}'

must find all terms, in the right order.

sundog-education.com

slop

page
081

curl -XGET 127.0.0.1:9200/movies/movie/_search?pretty -d '

{

"query": {

"match_phrase": {

"title": {"query": "star beyond", "slop": 1}

}

}

}'

order matters, but you’re OK with some words being in between the terms:

the slop represents how far you’re willing to let a term move to satisfy a
phrase (in either direction!)

another example: “quick brown fox” would match “quick fox” with a slop of 1.

sundog-education.com

proximity queries

page
082

curl -XGET 127.0.0.1:9200/movies/movie/_search?pretty -d '

{

"query": {

"match_phrase": {

"title": {"query": "star beyond", "slop": 100}

}

}

}'

remember this is a query – results are sorted by relevance.

just use a really high slop if you want to get any documents that contain the words in your
phrase, but want documents that have the words closer together scored higher.

sundog-education.com

elasticsearch

page
084

search for “Star Wars” movies
released after 1980, using both a URI
search and a request body search.exercise

pagination

sundog-education.com

specify “from” and
“size”

page
087

result 1
result 2
result 3
result 4
result 5
result 6
result 7
result 8

from = 0, size= 3

from = 3, size= 3

sundog-education.com

pagination syntax

page
088

curl -XGET '127.0.0.1:9200/movies/movie/_search?size=2&from=2&pretty'

curl -XGET 127.0.0.1:9200/movies/movie/_search?pretty -d'

{

"from": 2,

"size": 2,

"query": {"match": {"genre": "Sci-Fi"}}

}'

sundog-education.com

beware

page
089

deep pagination can kill performance.

every result must be retrieved, collected, and sorted.

enforce an upper bound on how many results you’ll return to users.

sorting

sundog-education.com

sorting your results is
usually quite simple.

page
092

curl -XGET '127.0.0.1:9200/movies/movie/_search?sort=year&pretty'

sundog-education.com

unless you’re dealing
with strings.

page
093

A string field that is analyzed for full-text search can’t be used to sort documents

This is because it exists in the inverted index as individual terms, not as the entire string.

sundog-education.com

If you need to sort on an analyzed field, map
a not_analyzed copy.

page
094

curl -XPUT 127.0.0.1:9200/movies/ -d '

{

"mappings": {

"movie": {

"_all": {"enabled": false},

"properties" : {

"title": {

"type" : "string",

"fields": {

"raw": {

"type": "string",

"index": "not_analyzed"

}

}

}

}

}

}

}'

sundog-education.com

Now you can sort on the
not_analyzed “raw” field.

page
095

curl -XGET '127.0.0.1:9200/movies/movie/_search?sort=title.raw&pretty'

sadly, you cannot change the mapping on an existing index.

you’d have to delete it, set up a new mapping, and re-index it.

like the number of shards, this is something you should think
about before importing data into your index.

more with
filters

sundog-education.com

another filtered
query

page
098

curl -XGET 127.0.0.1:9200/movies/_search?pretty -d'

{

"query":{

"bool": {

"must": {"match": {"genre": "Sci-Fi"}},

"must_not": {"match": {"title": "trek"}},

"filter": {"range": {"year": {"gte": 2010, "lt": 2015}}}

}

}

}'

sundog-education.com

elasticsearch

page
0100

search for science fiction movies
before 1960, sorted by title.exercise

fuzziness

sundog-education.com

fuzzy matches

page
0103

a way to account for typos and misspellings

the levenshtein edit distance accounts for:

• substitutions of characters (interstellar -> intersteller)
• insertions of characters (interstellar -> insterstellar)
• deletion of characters (interstellar -> interstelar)

all of the above have an edit distance of 1.

sundog-education.com

the fuzziness
parameter

page
0104

curl -XGET 127.0.0.1:9200/movies/movie/_search?pretty -d '

{

"query": {

"fuzzy": {

"title": {"value": "intrsteller", "fuzziness": 2}
}

}

}'

sundog-education.com

AUTO fuzziness

page
0105

fuzziness: AUTO

• 0 for 1-2 character strings
• 1 for 3-5 character strings
• 2 for anything else

partial
matching

sundog-education.com

prefix queries on
strings

page
0108

curl -XGET '127.0.0.1:9200/movies/movie/_search?pretty' -d '

{

"query": {

"prefix": {

"year": "201"

}

}

}'

If we remapped year to be a string…

sundog-education.com

wildcard queries

page
0109

curl -XGET '127.0.0.1:9200/movies/movie/_search?pretty' -d '

{

"query": {

"wildcard": {

"year": "1*"

}

}

}'

“regexp” queries also exist.

search as
you type

sundog-education.com

query-time search-
as-you-type

page
0112

curl -XGET '127.0.0.1:9200/movies/movie/_search?pretty' -d '

{

"query": {

"match_phrase_prefix": {

"title": {

"query": "star trek",

"slop": 10

}

}

}

}'

abusing sloppiness…

sundog-education.com

index-time with
N-grams

page
0113

“star”:

unigram: [s, t, a, r]
bigram: [st, ta, ar]
trigram: [sta, tar]
4-gram: [star]

edge n-grams are built only on the beginning of each term.

sundog-education.com

indexing n-grams

page
0114

curl -XPUT '127.0.0.1:9200/movies?pretty' -d '

{

"settings": {

"analysis": {

"filter": {

"autocomplete_filter": {

"type": "edge_ngram",

"min_gram": 1,

"max_gram": 20

}

},

"analyzer": {

"autocomplete": {

"type": "custom",

"tokenizer": "standard",

"filter": [

"lowercase",

"autocomplete_filter"

]

}

}

}

}

}'

1. Create an
“autocomplete”
analyzer

sundog-education.com

now map your field
with it

page
0115

curl -XPUT '127.0.0.1:9200/movies/_mapping/movie?pretty' -d '

{

"movie": {

"properties" : {

"title": {

"type" : "string",

"analyzer": "autocomplete"

}

}

}

}'

sundog-education.com

but only use n-grams on
the index side!

page
0116

curl -XGET 127.0.0.1:9200/movies/movie/_search?pretty -d '

{

"query": {

"match": {

"title": {

"query": "sta",

"analyzer": "standard"

}

}

}

}'

otherwise our query will also get split into n-grams, and we’ll get results for
everything that matches ‘s’, ‘t’, ‘a’, ‘st’, etc.

sundog-education.com

completion
suggesters

page
0117

You can also upload a list of all possible completions ahead of time
using completion suggesters.

importing
data

sundog-education.com

you can import from
just about anything

page
0120

stand-alone scripts can submit bulk documents via REST API

logstash and beats can stream data from logs, S3, databases, and more

AWS systems can stream in data via lambda or kinesis firehose

kafka, spark, and more have Elasticsearch integration add-ons

importing
via script / json

sundog-education.com

hack together a
script

page
0122

• read in data from some distributed filesystem
• transform it into JSON bulk inserts
• submit via HTTP / REST to your elasticsearch cluster

sundog-education.com

for completeness:

page
0123

import csv
import re

csvfile = open('ml-latest-small/movies.csv', 'r')

reader = csv.DictReader(csvfile)
for movie in reader:

print ("{ \"create\" : { \"_index\": \"movies\", \"_type\": \"movie\", \"_id\" : \"" , movie['movieId'], "\" } }", sep='')
title = re.sub(" \(.*\)$", "", re.sub('"','', movie['title']))
year = movie['title'][-5:-1]
if (not year.isdigit()):

year = "2016"
genres = movie['genres'].split('|')
print ("{ \"id\": \"", movie['movieId'], "\", \"title\": \"", title, "\", \"year\":", year, ", \"genre\":[", end='', sep='')
for genre in genres[:-1]:

print("\"", genre, "\",", end='', sep='')
print("\"", genres[-1], "\"", end = '', sep='')
print ("] }")

importing
via client api’s

sundog-education.com

a less hacky script.

page
0126

es = elasticsearch.Elasticsearch()

es.indices.delete(index="ratings",ignore=404)

deque(helpers.parallel_bulk(es,readRatings(),index="ratings",doc_type

es.indices.refresh()

free elasticsearch client libraries are available for pretty much any language.

• java has a client maintained by elastic.co
• python has an elasticsearch package
• elasticsearch-ruby
• several choices for scala
• elasticsearch.pm module for perl

You don’t have to wrangle JSON.

sundog-education.com

for completeness:

page
0127

import csv
from collections import deque
import elasticsearch
from elasticsearch import helpers

def readMovies():
csvfile = open('ml-latest-small/movies.csv', 'r')

reader = csv.DictReader(csvfile)

titleLookup = {}

for movie in reader:
titleLookup[movie['movieId']] = movie['title']

return titleLookup

def readRatings():
csvfile = open('ml-latest-small/ratings.csv', 'r')

titleLookup = readMovies()

reader = csv.DictReader(csvfile)
for line in reader:

rating = {}
rating['user_id'] = int(line['userId'])
rating['movie_id'] = int(line['movieId'])
rating['title'] = titleLookup[line['movieId']]
rating['rating'] = float(line['rating'])
rating['timestamp'] = int(line['timestamp'])
yield rating

es = elasticsearch.Elasticsearch()

es.indices.delete(index="ratings",ignore=404)
deque(helpers.parallel_bulk(es,readRatings(),index="ratings",doc_type="rating"), maxlen=0)
es.indices.refresh()

sundog-education.com

elasticsearch

page
0129

write a script to import the tags.csv
data from ml-latest-small into a new
“tags” index.exercise

sundog-education.com

my solution

page
0130

import csv
from collections import deque
import elasticsearch
from elasticsearch import helpers

def readMovies():
csvfile = open('ml-latest-small/movies.csv', 'r')

reader = csv.DictReader(csvfile)

titleLookup = {}

for movie in reader:
titleLookup[movie['movieId']] = movie['title']

return titleLookup

def readTags():
csvfile = open('ml-latest-small/tags.csv', 'r')

titleLookup = readMovies()

reader = csv.DictReader(csvfile)
for line in reader:

tag = {}
tag['user_id'] = int(line['userId'])
tag['movie_id'] = int(line['movieId'])
tag['title'] = titleLookup[line['movieId']]
tag['tag'] = line['tag']
tag['timestamp'] = int(line['timestamp'])
yield tag

es = elasticsearch.Elasticsearch()

es.indices.delete(index="tags",ignore=404)
deque(helpers.parallel_bulk(es,readTags(),index="tags",doc_type="tag"), maxlen=0)
es.indices.refresh()

introducing
logstash

sundog-education.com

what logstash
is for

page
0133

files s3 beats kafka …

logstash

elastic-
search

mongo
db

hadoopaws …

sundog-education.com

it’s more than
plumbing

page
0134

• logstash parses, transforms, and filters data as it passes through.
• it can derive structure from unstructured data
• it can anonymize personal data or exclude it entirely
• it can do geo-location lookups
• it can scale across many nodes
• it guarantees at-least-once delivery
• it absorbs throughput from load spikes

See https://www.elastic.co/guide/en/logstash/current/filter-plugins.html
for the huge list of filter plugins.

https://www.elastic.co/guide/en/logstash/current/filter-plugins.html

sundog-education.com

huge variety of input
source events

page
0135

elastic beats – cloudwatch – couchdb – drupal – elasticsearch –
windows event log – shell output – local files – ganglia – gelf –

gemfire – random generator – github – google pubsub – graphite –
heartbeats – heroku – http – imap – irc – jdbc – jmx – kafka –
lumberjack – meetup – command pipes – puppet – rabbitmq –
rackspace cloud queue – redis – relp – rss – s3 – salesforce –

snmp – sqlite – sqs – stdin – stomp – syslog – tcp – twitter – udp
– unix sockets – varnish log – websocket – wmi – xmpp – zenoss

– zeromq

sundog-education.com

huge variety of output
“stash” destinations

page
0136

boundary – circonus – cloudwatch – csv – datadoghq –
elasticsearch – email – exec – local file – ganglia – gelf –
bigquery – google cloud storage – graphite – graphtastic –
hipchat – http – influxdb – irc – jira – juggernaut – kafka –
librato – loggly – lumberjack – metriccatcher – mongodb –
nagios – new relic insights – opentsdb – pagerduty – pipe

to stdin – rabbitmq – rackspace cloud queue – redis –
redmine – riak – riemann – s3 – sns – solr – sqs – statsd

– stdout – stomp – syslog – tcp – udp – webhdfs –
websocket – xmpp – zabbix - zeromq

sundog-education.com

typical usage

page
0137

beats filesWeb logs

elasticsearch

Parse into structured
fields, geolocate logstash

or

installing
logstash

sundog-education.com

installing
logstash

page
0140

sudo apt-get update
sudo apt-get install logstash

sundog-education.com

configuring
logstash

page
0141

input {

file {

path => "/home/fkane/access_log“

start_position => "beginning"
ignore_older => 0

}

}

filter {

grok {

match => { "message" => "%{COMBINEDAPACHELOG}" }

}

date {

match => ["timestamp", "dd/MMM/yyyy:HH:mm:ss Z"]

}

}

output {

elasticsearch {

hosts => ["localhost:9200"]

}

stdout {

codec => rubydebug

}

}

sudo vi /etc/logstash/conf.d/logstash.conf

sundog-education.com

running
logstash

page
0142

cd /usr/share/logstash/

sudo bin/logstash -f /etc/logstash/conf.d/logstash.conf

logstash
with mysql

sundog-education.com

install a
jdbc driver

page
0145

get a mysql connector from https://dev.mysql.com/downloads/connector/j/

wget https://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.42.zip

unzip mysql-connector-java-5.1.42.zip

https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.42.zip

sundog-education.com

configure
logstash

page
0146

input {

jdbc {

jdbc_connection_string => "jdbc:mysql://localhost:3306/movielens"

jdbc_user => "root"

jdbc_password => “password"

jdbc_driver_library => "/home/fkane/mysql-connector-java-5.1.42/mysql-connector-java-5.1.42-bin.jar"

jdbc_driver_class => "com.mysql.jdbc.Driver"

statement => "SELECT * FROM movies"

}

}

logstash
with s3

sundog-education.com

what is
s3

page
0149

amazon web services’ simple storage service

cloud-based distributed storage system

sundog-education.com

integration is
easy-peasy.

page
0150

input {

s3 {

bucket => "sundog-es"

access_key_id => "AKIAIS****C26Y***Q"

secret_access_key => "d*****FENOXcCuNC4iTbSLbibA*****eyn****"

}

}

logstash
with kafka

sundog-education.com

what is
kafka

page
0153

• apache kafka
• open-source stream processing platform
• high throughput, low latency
• publish/subscribe
• process streams
• store streams

has a lot in common with logstash, really.

sundog-education.com

integration is
easy-peasy.

page
0154

input {
kafka {

bootstrap_servers => "localhost:9092"
topics => ["kafka-logs"]

}
}

elasticsearch
with spark

sundog-education.com

what is
apache spark

page
0157

• “a fast and general engine for large-scale data processing”
• a faster alternative to mapreduce
• spark applications are written in java, scala, python, or r
• supports sql, streaming, machine learning, and graph processing

flink is nipping at spark’s heels, and can also integrate with elasticsearch.

sundog-education.com

integration with
elasticsearch-spark

page
0158

./spark-2.1.1-bin-hadoop2.7/bin/spark-shell --packages org.elasticsearch:elasticsearch-spark-20_2.11:5.4.3

import org.elasticsearch.spark.sql._

case class Person(ID:Int, name:String, age:Int, numFriends:Int)

def mapper(line:String): Person = {

val fields = line.split(',')

val person:Person = Person(fields(0).toInt, fields(1), fields(2).toInt, fields(3).toInt)

return person

}

import spark.implicits._

val lines = spark.sparkContext.textFile("fakefriends.csv")

val people = lines.map(mapper).toDF()

people.saveToEs("spark/people")

sundog-education.com

elasticsearch

page
0160

write spark code that imports movie
ratings from ml-latest-small into a
“spark” index with a “ratings” type.exercise

sundog-education.com

integration with
elasticsearch-spark

page
0161

./spark-2.1.1-bin-hadoop2.7/bin/spark-shell --packages org.elasticsearch:elasticsearch-spark-20_2.11:5.4.3

import org.elasticsearch.spark.sql._

case class Person(ID:Int, name:String, age:Int, numFriends:Int)

def mapper(line:String): Person = {

val fields = line.split(',')

val person:Person = Person(fields(0).toInt, fields(1), fields(2).toInt, fields(3).toInt)

return person

}

import spark.implicits._

val lines = spark.sparkContext.textFile("fakefriends.csv")

val people = lines.map(mapper).toDF()

people.saveToEs("spark/people")

sundog-education.com

dealing with the
header line

page
0162

val header = lines.first()

val data = lines.filter(row => row != header)

sundog-education.com

my solution

page
0163

import org.elasticsearch.spark.sql._

case class Rating(userID:Int, movieID:Int, rating:Float, timestamp:Int)

def mapper(line:String): Rating= {

val fields = line.split(',')

val rating:Rating = Rating(fields(0).toInt, fields(1).toInt, fields(2).toFloat, fields(3).toInt)

return rating

}

import spark.implicits._

val lines = spark.sparkContext.textFile("ml-latest-small/ratings.csv")

val header = lines.first()

val data = lines.filter(row => row != header)

val ratings= data.map(mapper).toDF()

ratings.saveToEs("spark/ratings")

aggregations

sundog-education.com

it’s not just for search
anymore

page
0166

4.3

2.5

3.5

4.5

q1 q2 q3 q4

metrics

average, stats,
min/max, percentiles,

etc.

buckets

histograms, ranges,
distances, significant

terms, etc.

pipelines

moving average,
average bucket,

cumulative sum, etc.

matrix

matrix stats

sundog-education.com

aggregations
are amazing

elasticsearch aggregations can
sometimes take the place of hadoop /

spark / etc – and return results instantly!

sundog-education.com

it gets better

you can even nest aggregations
together!

sundog-education.com

let’s learn
by example

page
0169

curl -XGET

'127.0.0.1:9200/ratings/rating/_search?size=0&pretty' -d ‘

{

"aggs": {

"ratings": {

"terms": {

"field": "rating"

}

}

}

}'

bucket by rating value:

sundog-education.com

let’s learn
by example

page
0170

curl -XGET
'127.0.0.1:9200/ratings/rating/_search?size=0&pretty' -d ‘
{

"query": {
"match": {

"rating": 5.0
}

},
"aggs" : {

"ratings": {
"terms": {

"field" : "rating"
}

}
}

}'

count only 5-star ratings:

sundog-education.com

let’s learn
by example

page
0171

curl -XGET
'127.0.0.1:9200/ratings/rating/_search?size=0&pretty' -d ‘
{

"query": {
"match_phrase": {

"title": "Star Wars Episode IV"
}

},
"aggs" : {

"avg_rating": {
"avg": {

"field" : "rating"
}

}
}

}'

average rating for Star Wars:

histograms

sundog-education.com

what is a
histogram

page
0174

display totals of
documents
bucketed by
some interval
range

sundog-education.com

display ratings by
1.0-rating intervals

page
0175

curl -XGET

'127.0.0.1:9200/ratings/rating/_search?size=0&pretty' -d ‘

{

"aggs" : {

"whole_ratings": {

"histogram": {

"field": "rating",

"interval": 1.0

}

}

}

}'

sundog-education.com

count up movies
from each decade

page
0176

curl -XGET

'127.0.0.1:9200/movies/movie/_search?size=0&pretty' -d ‘

{

"aggs" : {

"release": {

"histogram": {

"field": "year",

"interval": 10

}

}

}

}

time series

sundog-education.com

dealing with time

page
0179

Elasticsearch can
bucket and aggregate
fields that contain time
and dates properly. You
can aggregate by “year”
or “month” and it knows
about calendar rules.

sundog-education.com

break down website
hits by hour:

page
0180

curl -XGET '127.0.0.1:9200/logstash-

2015.12.04/logs/_search?size=0&pretty' -d ‘

{

"aggs" : {

"timestamp": {

"date_histogram": {

"field": "@timestamp",

"interval": "hour"

}

}

}

}'

sundog-education.com

when does google
scrape me?

page
0181

curl -XGET '127.0.0.1:9200/logstash-

2015.12.04/logs/_search?size=0&pretty' -d ‘

{

"query" : {

"match": {

"agent": "Googlebot"

}

},

"aggs" : {

“timestamp": {

"date_histogram": {

"field": "@timestamp",

"interval": "hour"

}

}

}

}'

sundog-education.com

elasticsearch

page
0183

when did my site go down on
december 4, 2015? (bucket 500 status
codes by the minute in logstash-
2015.12.04/logs)

exercise

sundog-education.com

my solution

page
0184

GET /logstash-2015.12.04/logs/_search?size=0&pretty

{

"query" : {

"match": {

"response": "500"

}

},

"aggs" : {

"timestamp": {

"date_histogram": {

"field": "@timestamp",

"interval": "minute"

}

}

}

}

nested
aggregations

sundog-education.com

nested
aggregations

Aggregations can be nested for more powerful queries.

For example, what’s the average rating for each Star Wars movie?

Let’s undertake this as an activity – and show you what can go
wrong along the way.

sundog-education.com

for reference, here’s the
final query

page
0188

curl -XGET '127.0.0.1:9200/ratings/rating/_search?size=0&pretty' -d ‘

{

"query": {

"match_phrase": {

"title": "Star Wars"

}

},

"aggs" : {

"titles": {

"terms": {

"field": "title.raw"

},

"aggs": {

"avg_rating": {

"avg": {

"field" : "rating"

}

}

}

}

}

}'

using
kibana

sundog-education.com

what is
kibana

page
0191

sundog-education.com

installing kibana

page
0192

sudo apt-get install kibana
sudo vi /etc/kibana/kibana.yml

change server.host to 0.0.0.0
add xpack.security.enabled: false

sudo /bin/systemctl daemon-reload
sudo /bin/systemctl enable kibana.service
sudo /bin/systemctl start kibana.service

kibana is now available on port 5601

playing with
kibana

let’s analyze the works
of william shakespeare…

because we can.

sundog-education.com

elasticsearch

page
0197

find the longest shakespeare plays –
create a vertical bar chart that
aggregates the count of documents by
play name in descending order.

exercise

using
filebeat

sundog-education.com

filebeat is a lightweight
shipper for logs

page
0200

log log log

filebeat

logstash

elastic-
search

filebeat maintains a read pointer on the logs.
every log line acts like a queue.

logs can be from apache, nginx, auditd, or mysql

logstash and filebeat can communicate to
maintain “backpressure” when things back up

filebeat can optionally talk directly to elasticsearch.
when using logstash, elasticsearch is just one of many
possible destinations!

kibana

sundog-education.com

this is called the
elastic stack

page
0201

prior to beats, you’d hear about the “ELK stack” –
elasticsearch, logstash, kibana.

sundog-education.com

why use filebeat and logstash
and not just one or the other?

page
0202

• it won’t let you overload your pipeline.

• you get more flexibility on scaling your cluster.

installing
filebeat

sundog-education.com

installing and
testing filebeat

page
0205

sudo apt-get update && sudo apt-get install filebeat

cd /usr/share/elasticsearch/
sudo bin/elasticsearch-plugin install ingest-geoip
sudo bin/elasticsearch-plugin install ingest-user-agent
sudo /bin/systemctl stop elasticsearch.service
sudo /bin/systemctl start elasticsearch.service

sudo vi /etc/filebeat/filebeat.yml

Comment out existing log section, add at the bottom:

filebeat.modules:
- module: apache2
access:
var.paths: ["/home/fkane/logs/access*"]

error:
var.paths: ["/home/fkane/logs/error*"]

cd /usr/share/filebeat
sudo scripts/import_dashboards
sudo /bin/systemctl stop kibana.service
sudo /bin/systemctl start kibana.service

Make /home/<username>/logs
cd into it
wget http://media.sundog-soft.com/es/access_log
sudo /bin/systemctl start filebeat.service

analyzing logs
with kibana

sundog-education.com

elasticsearch

page
0209

between 9:30 – 10:00 AM on May 4,
2017, which cities were generating
404 errors?exercise

elasticsearch
operations

choosing your
shards

sundog-education.com

an index is split into
shards.

page
0213

1 2 3 …

Shakespeare

Documents are hashed to a particular shard.

Each shard may be on a different node in a cluster.
Every shard is a self-contained Lucene index of its own.

sundog-education.com

primary and replica
shards

page
0214

Primary
1

Replica
0

Node 1

Replica
0

Replica
1

Node 2

Primary
0

Replica
1

Node 3

This index has two primary shards and two replicas.
Your application should round-robin requests amongst nodes.

Write requests are routed to the primary shard, then replicated
Read requests are routed to the primary or any replica

sundog-education.com

how many shards
do i need?

page
0215

• you can’t add more shards later without re-indexing
• but shards aren’t free – you can just make 1,000 of

them and stick them on one node at first.
• you want to overallocate, but not too much
• consider scaling out in phases, so you have time to

re-index before you hit the next phase

sundog-education.com

really? that’s kind
of hand-wavy.

page
0216

• the “right” number of shards depends on your data
and your application. there’s no secret formula.

• start with a single server using the same hardware
you use in production, with one shard and no
replication.

• fill it with real documents and hit it with real queries.
• push it until it breaks – now you know the capacity of

a single shard.

sundog-education.com

remember replica shards
can be added

page
0217

• read-heavy applications can add more replica shards without re-indexing.
• note this only helps if you put the new replicas on extra hardware!

adding an index

sundog-education.com

creating a new
index

page
0220

PUT /new_index
{

“settings”: {
“number_of_shards”: 10,
“number_of_replicas”: 1

}
}

You can use index templates to automatically
apply mappings, analyzers, aliases, etc.

sundog-education.com

multiple indices as
a scaling strategy

page
0221

• make a new index to hold new data
• search both indices
• use index aliases to make this easy to do

sundog-education.com

multiple indices as
a scaling strategy

page
0222

• with time-based data, you can have one index per time
frame

• common strategy for log data where you usually just
want current data, but don’t want to delete old data
either

• again you can use index aliases, ie “logs_current”,
“last_3_months”, to point to specific indices as they
rotate

sundog-education.com

alias rotation
example

page
0223

POST /_aliases
{

“actions”: [
{ “add”: { “alias”: “logs_current”, “index”: “logs_2017_06” }},
{ “remove”: { “alias”: “logs_current”, “index”: “logs_2017_05” }},
{ “add”: { “alias”: “logs_last_3_months”, “index”: “logs_2017_06” }},
{ “remove”: { “alias”: “logs_last_3_months”, “index”: “logs_2017_03” }}

]
}

optionally….
DELETE /logs_2017_03

choosing your
hardware

RAM is likely your bottleneck

64GB per machine is the sweet spot
(32GB to elasticsearch, 32GB to the
OS / disk cache for lucene)

under 8GB not recommended

sundog-education.com

other hardware
considerations

page
0227

• fast disks are better – SSD’s if possible (with deadline or
noop i/o scheduler)

• user RAID0 – your cluster is already redundant
• cpu not that important
• need a fast network
• don’t use NAS
• use medium to large configurations; too big is bad, and too

many small boxes is bad too.

heap sizing

sundog-education.com

your heap size is
wrong

page
0230

the default heap size is only 1GB!

half or less of your physical memory should be allocated to elasticsearch
• the other half can be used by lucene for caching
• if you’re not aggregating on analyzed string fields, consider using less

than half for elasticsearch
• smaller heaps result in faster garbage collection and more

memory for caching

export ES_HEAP_SIZE=10g

or
ES_JAVA_OPTS=“-Xms10g –Xmx10g” ./bin/elasticsearch

don’t cross 32GB! pointers blow up then.

monitoring with
x-pack

sundog-education.com

what is x-pack?

page
0233

• an elastic stack extension
• security, monitoring, alerting, reporting, graph, and machine

learning
• formerly shield / watcher / marvel
• only parts can be had for free – requires a paid license or trial

otherwise

sundog-education.com

let’s install x-pack
and mess around with it.

page
0234

cd /usr/share/elasticsearch
sudo bin/elasticsearch-plugin install x-pack

sudo vi /etc/elasticsearch/elasticsearch.yml
(Add xpack.security.enabled:false)

sudo /bin/systemctl stop elasticsearch.service

sudo /bin/systemctl start elasticsearch.service
cd /usr/share/kibana/
sudo -u kibana bin/kibana-plugin install x-pack
sudo /bin/systemctl stop kibana.service

sudo /bin/systemctl start kibana.service

failover
in action

sundog-education.com

in this activity, we’ll…

page
0237

• Set up a second elasticsearch node on our virtual machine
• Observe how elasticsearch automatically expands across this new node
• Stop our original node, and observe everything move to the new one
• Restart our original node, and observe everything going back to normal… automatically!

using
snapshots

sundog-education.com

snapshots let you back
up your indices

page
0240

store backups to NAS, Amazon S3, HDFS, Azure

smart enough to only store changes since last snapshot

sundog-education.com

create a repository

page
0241

PUT _snapshot/backup-repo
{
"type": "fs",
"settings": {

"location": "/home/<user>/backups/backup-repo"
}
}

add it into elasticsearch.yml:
path.repo: ["/home/<user>/backups"]

sundog-education.com

using snapshots

page
0242

snapshot all open indices:
PUT _snapshot/backup-repo/snapshot-1

get information about a snapshot:
GET _snapshot/backup-repo/snapshot-1

monitor snapshot progress:
GET _snapshot/backup-repo/snapshot-1/_status

restore a snapshot of all indices:
POST /_all/_close
POST _snapshot/backup-repo/snapshot-1/_restore

rolling
restarts

sundog-education.com

restarting your
cluster

page
0245

sometimes you have to… OS updates, elasticsearch version updates, etc.

to make this go quickly and smoothly, you want to disable index
reallocation while doing this.

sundog-education.com

rolling restart
procedure

page
0246

1. stop indexing new data if possible
2. disable shard allocation
3. shut down one node
4. perform your maintenance on it and restart, confirm it joins the cluster.
5. re-enable shard allocation
6. wait for the cluster to return to green status
7. repeat steps 2-6 for all other nodes
8. resume indexing new data

sundog-education.com

cheat sheet

page
0247

PUT _cluster/settings
{
"transient": {
"cluster.routing.allocation.enable": "none"

}
}

sudo /bin/systemctl stop elasticsearch.service

PUT _cluster/settings
{
"transient": {
"cluster.routing.allocation.enable": "all"

}
}

Disable shard allocation

Stop elasticsearch safely

Enable shard allocation

let’s
practice

amazon
elasticsearch

service

sundog-education.com

let’s walk through
setting this up

page
0251

amazon es lets you quickly rent and configure an elasticsearch cluster

this costs real money! Just watch if that bothers you

the main thing that’s different with amazon es is security

amazon es
+logstash

sundog-education.com

let’s do something a
little more complicated

page
0254

• set up secure access to your cluster from kibana and from logstash
• need to create a IAM user and its credentials
• simultaneously allow access to the IP you’re connecting to kibana from and this user
• configure logstash with that user’s credentials for secure communication to the ES cluster

sundog-education.com

our access policy

page
0255

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"AWS": [
"arn:aws:iam::159XXXXXXX66:user/estest",
"arn:aws:iam:: 159XXXXXXX66:user/estest :root"

]
},
"Action": "es:*",
"Resource": "arn:aws:es:us-east-1: 159XXXXXXX66:user/estest :domain/frank-test/*"

},
{
"Effect": "Allow",
"Principal": {
"AWS": "*"

},
"Action": [
"es:ESHttpGet",
"es:ESHttpPut",
"es:ESHttpPost",
"es:ESHttpHead"

],
"Resource": "arn:aws:es:us-east-1: 159XXXXXXX66:user/estest :domain/frank-test/*",
"Condition": {
"IpAddress": {
"aws:SourceIp": [
"192.168.1.1",
"127.0.0.1",
"68.204.31.192"

]
}

}
}

]
}

substitute your own aws
account ID, IAM user, cluster
name, and IP address

sundog-education.com

our logstash
configuration

page
0256

input {

file {

path => "/home/fkane/access_log-2"

}

}

output {

amazon_es {

hosts => ["search-test-logstash-tdjkXXXXXXdtp3o3hcy.us-east-

1.es.amazonaws.com"]

region => "us-east-1"

aws_access_key_id => 'AKIXXXXXXK7XYQQ'

aws_secret_access_key =>

'7rvZyxmUudcXXXXXXXXXgTunpuSyw2HGuF'

index => "production-logs-%{+YYYY.MM.dd}"

}

Substitute your own log
path, elasticsearch
endpoint, region, and
credentials

elastic
cloud

sundog-education.com

what is elastic
cloud?

page
0259

elastic’s hosted solution
built on top of aws
includes x-pack (unlike amazon es)
simpler setup ui
x-pack security simplifies things
this costs extra!

let’s set up a
trial cluster.

wrapping up

you made it!

you learned a lot:

• installing elasticsearch
• mapping and indexing data
• searching data
• importing data
• aggregating data
• using kibana
• using logstash, beats, and the elastic stack
• elasticsearch operations and deployment
• using hosted elasticsearch clusters

learning more

• https://www.elastic.co/learn
• elasticsearch: the definitive guide
• documentation
• live training and videos
• keep experimenting!

https://www.elastic.co/learn

THANK YOU

