Getting Set Up

Installation Checklist

- Use a hosted environment (requires subscription) OR
- Install Anaconda
 - Open up an Anaconda command prompt
 - conda install pydotplus
 - pip install tensorflow
- Download course materials from www.sundog-education.com/machine-learning

Python Basics

Let's just jump right into some code.

Types of Data

Presented by

Frank Kane

Many Flavors of Data

Major Types of Data

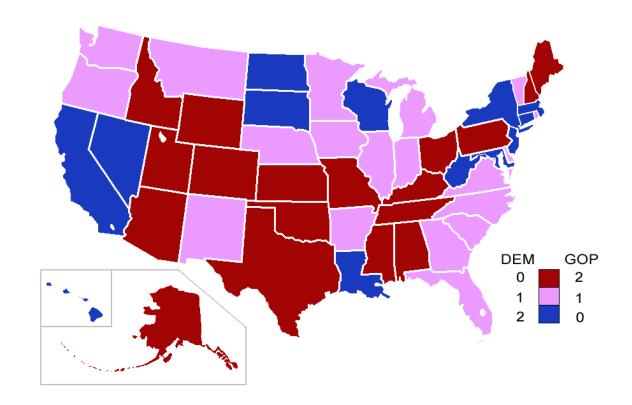
- Numerical
- Categorical
- Ordinal

Numerical

- Represents some sort of quantitative measurement
 - Heights of people, page load times, stock prices, etc.
- Discrete Data
 - Integer based; often counts of some event.
 - How many purchases did a customer make in a year?
 - How many times did I flip "heads"?
- Continuous Data
 - Has an infinite number of possible values
 - How much time did it take for a user to check out?
 - How much rain fell on a given day?

Categorical

- Qualitative data that has no inherent mathematical meaning
 - Gender, Yes/no (binary data), Race, State of Residence, Product Category, Political Party, etc.
- You can assign numbers to categories in order to represent them more compactly, but the numbers don't have mathematical meaning

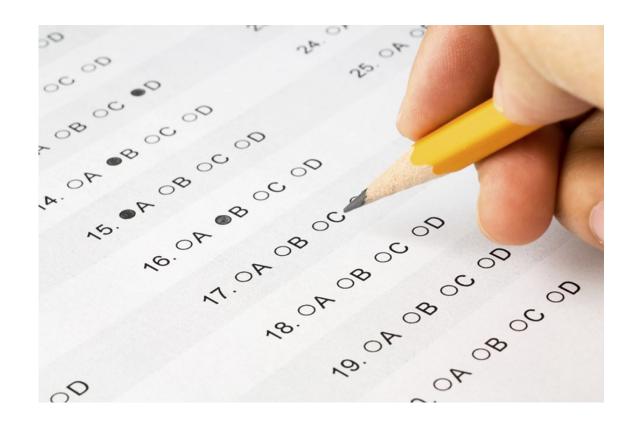


Ordinal

- A mixture of numerical and categorical
- Categorical data that has mathematical meaning
- Example: movie ratings on a 1-5 scale.
 - Ratings must be 1, 2, 3, 4, or 5
 - But these values have mathematical meaning; 1 means it's a worse movie than a 2.

Quiz time!

- Are the following types of data numerical, categorical, or ordinal?
 - How much gas is in your gas tank
 - A rating of your overall health where the choices are 1, 2, 3, or 4, corresponding to "poor", "moderate", "good", and "excellent"
 - The races of your classmates
 - Ages in years
 - Money spent in a store



Mean, Median, and Mode

Mean

- AKA Average
- Sum / number of samples
- Example:
 - Number of children in each house on my street:

The MEAN is
$$(0+2+3+2+1+0+0+2+0) / 9 = 1.11$$

Median

- Sort the values, and take the value at the midpoint.
- Example:

0, 2, 3, 2, 1, 0, 0, 2, 0
Sort it:
0, 0, 0, 0, 1, 2, 2, 2, 3

Median

- If you have an even number of samples, take the average of the two in the middle.
- Median is less susceptible to outliers than the mean
 - Example: mean household income in the US is \$72,641, but the median is only \$51,939 because the mean is skewed by a handful of billionaires.
 - Median better represents the "typical"
 American in this example.

Mode

- The most common value in a data set
 - Not relevant to continuous numerical data
- Back to our number of kids in each house example:

0, 2, 3, 2, 1, 0, 0, 2, 0

How many of each value are there?

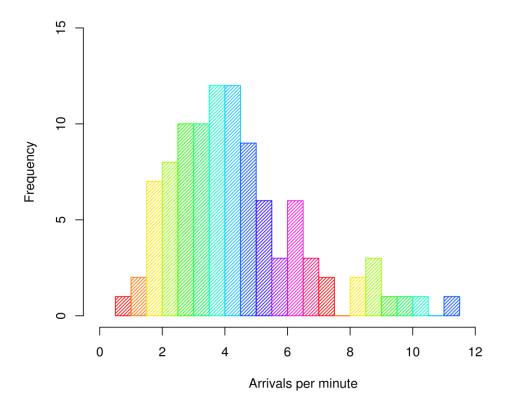
0: 4, 1: 1, 2: 3, 3: 1

The MODE is 0

Standard Deviation and Variance

An example of a histogram

Histogram of arrivals



Variance measures how "spread-out" the data is.

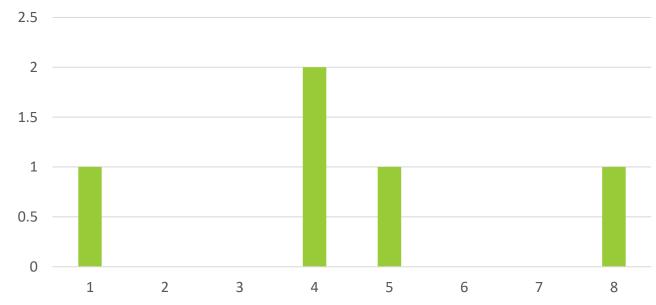
- Variance (σ^2) is simply the average of the squared differences from the mean
- Example: What is the variance of the data set (1, 4, 5, 4, 8)?
 - First find the mean: (1+4+5+4+8)/5 = 4.4
 - Now find the differences from the mean: (-3.4, -0.4, 0.6, -0.4, 3.6)
 - Find the squared differences: (11.56, 0.16, 0.36, 0.16, 12.96)
 - Find the average of the squared differences:
 - σ^2 = (11.56 + 0.16 + 0.36 + 0.16 + 12.96) / 5 = 5.04

Standard Deviation σ is just the square root of the variance.

$$\sigma^2 = 5.04$$

$$\sigma = \sqrt{5.04} = 2.24$$

So the standard deviation of (1, 4, 5, 4, 8) is 2.24.



This is usually used as a way to identify outliers. Data points that lie more than one standard deviation from the mean can be considered unusual.

You can talk about how extreme a data point is by talking about "how many sigmas" away from the mean it is.

Population vs. Sample

- If you're working with a sample of data instead of an entire data set (the entire *population*)...
 - Then you want to use the "sample variance" instead of the "population variance"
 - For N samples, you just divide the squared variances by N-1 instead of N.
 - So, in our example, we computed the population variance like this:
 - σ^2 = (11.56 + 0.16 + 0.36 + 0.16 + 12.96) / 5 = 5.04
 - But the sample variance would be:
 - $S^2 = (11.56 + 0.16 + 0.36 + 0.16 + 12.96) / 4 = 6.3$

Fancy Math

• Population variance:

$$\sigma^2 = \frac{\sum (X - \mu)^2}{N}$$

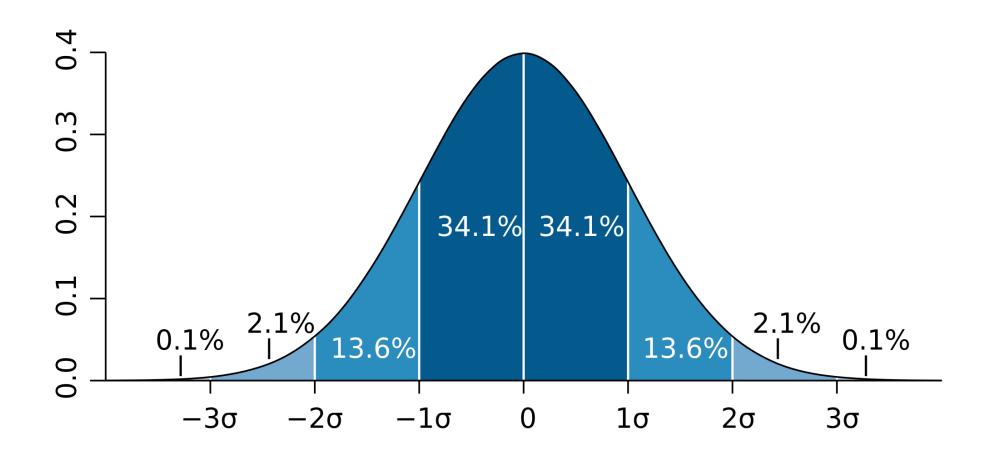
• Sample variance:

$$S^2 = \frac{\sum (X-M)^2}{N-1}$$

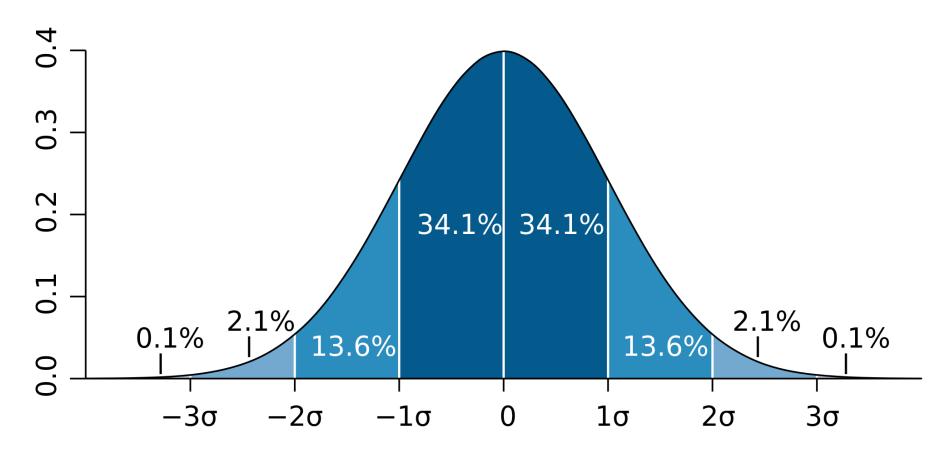
Let's look at another example.

Probability Density Functions

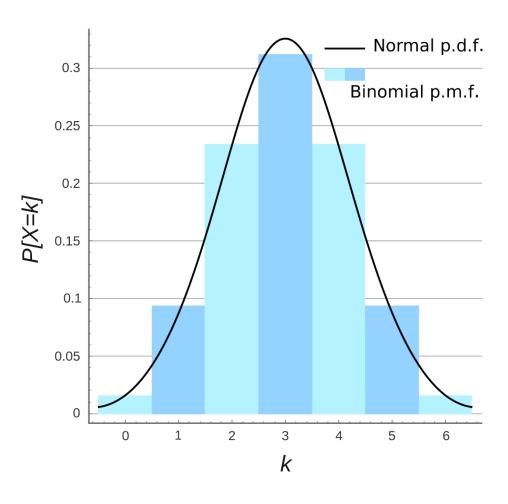
Example: a "normal distribution"



Gives you the probability of a data point falling within some given range of a given value.



Probability Mass Function

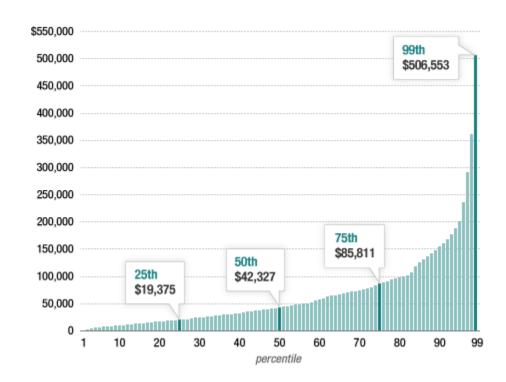


Let's play with some examples.

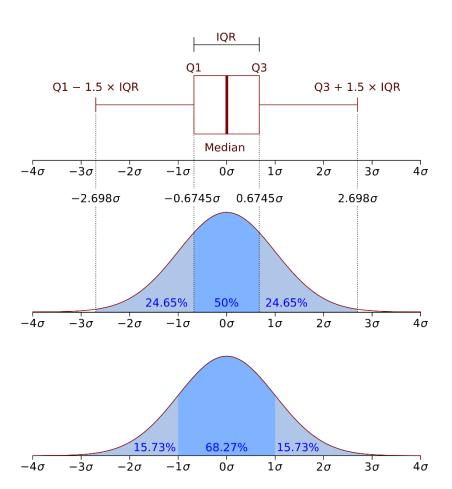
Percentiles and Moments

Percentiles

- In a data set, what's the point at which X% of the values are less than that value?
- Example: income distribution



Percentiles in a normal distribution



Let's look at some examples.

Moments

- Quantitative measures of the shape of a probability density function
- Mathematically they are a bit hard to wrap your head around:

$$\mu_n = \int_{-\infty}^{\infty} (x - c)^n f(x) dx$$
 (for moment *n* around value *c*)

• But intuitively, it's a lot simpler in statistics.

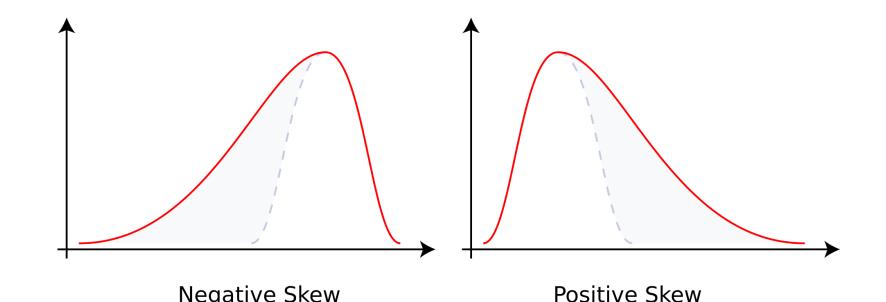
The first moment is the mean.

The second moment is the variance.

Yes, it's just that simple.

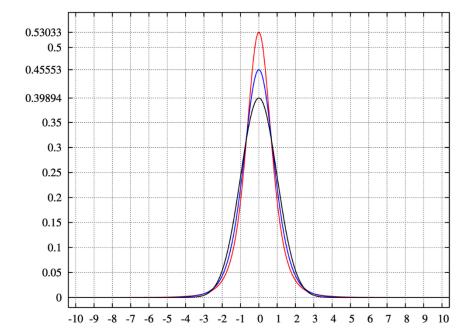
The third moment is "skew" (γ)

- How "lopsided" is the distribution?
- A distribution with a longer tail on the left will be skewed left, and have a negative skew.



The fourth moment is "kurtosis"

- How thick is the tail, and how sharp is the peak, compared to a normal distribution?
- Example: higher peaks have higher kurtosis

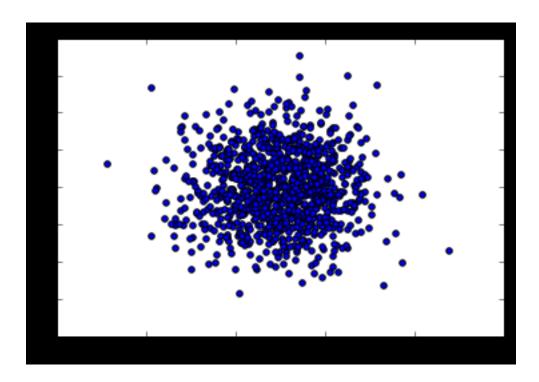


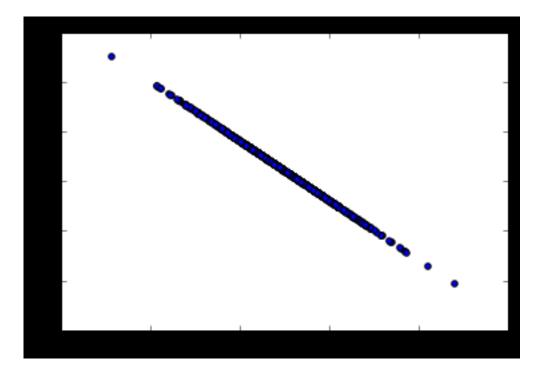
Let's compute the 4 moments in Python.

Covariance and Correlation

Covariance

• Measures how two variables vary in tandem from their means.





Measuring covariance

- Think of the data sets for the two variables as high-dimensional vectors
- Convert these to vectors of variances from the mean
- Take the dot product (cosine of the angle between them) of the two vectors
- Divide by the sample size

Interpreting covariance is hard

- We know a small covariance, close to 0, means there isn't much correlation between the two variables.
- And large covariances that is, far from 0 (could be negative for inverse relationships) mean there is a correlation
- But how large is "large"?

That's where correlation comes in!

- Just divide the covariance by the standard deviations of both variables, and that normalizes things.
- So a correlation of -1 means a perfect inverse correlation
- Correlation of 0: no correlation
- Correlation 1: perfect correlation

Remember: correlation does not imply causation!

- Only a controlled, randomized experiment can give you insights on causation.
- Use correlation to decide what experiments to conduct!

Let's play with some data.

Conditional Probability

Conditional Probability

- If I have two events that depend on each other, what's the probability that both will occur?
- Notation: P(A,B) is the probability of A and B both occurring
- P(B|A): Probability of B given that A has occurred
- We know:

$$P(B|A) = \frac{P(A,B)}{P(A)}$$

For example

- I give my students two tests. 60% of my students passed both tests, but the first test was easier 80% passed that one. What percentage of students who passed the first test also passed the second?
- A = passing the first test, B = passing the second test
- So we are asking for P(B|A) the probability of B given A

•
$$P(B|A) = \frac{P(A,B)}{P(A)} = \frac{0.6}{0.8} = 0.75$$

• 75% of students who passed the first test passed the second.

Let's do another example using Python.

Bayes' Theorem

Bayes' Theorem

 Now that you understand conditional probability, you can understand Bayes' Theorem:

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

In English – the probability of A given B, is the probability of A times the probability of B given A over the probability of B.

The key insight is that the probability of something that depends on B depends very much on the base probability of B and A. People ignore this all the time.

Bayes' Theorem to the rescue

- Drug testing is a common example. Even a "highly accurate" drug test can produce more false positives than true positives.
- Let's say we have a drug test that can accurately identify users of a drug 99% of the time, and accurately has a negative result for 99% of non-users. But only 0.3% of the overall population actually uses this drug.

Bayes' Theorem to the rescue

- Event A = Is a user of the drug, Event B = tested positively for the drug.
- We can work out from that information that P(B) is 1.3% (0.99 * 0.003 + 0.01 * 0.997 the probability of testing positive if you do use, plus the probability of testing positive if you don't.)

•
$$P(A|B) = \frac{P(A)P(B|A)}{P(B)} = \frac{0.003*0.99}{0.013} = 22.8\%$$

- So the odds of someone being an actual user of the drug given that they tested positive is only 22.8%!
- Even though P(B|A) is high (99%), it doesn't mean P(A|B) is high.

Linear Regression

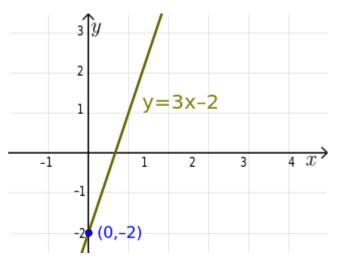
Linear Regression

- Fit a line to a data set of observations
- Use this line to predict unobserved values
- I don't know why they call it "regression." It's really misleading. You can use it to predict points in the future, the past, whatever. In fact time usually has nothing to do with it.



Linear Regression: How does it work?

- Usually using "least squares"
- Minimizes the squared-error between each point and the line
- Remember the slope-intercept equation of a line? y=mx+b
- The slope is the correlation between the two variables times the standard deviation in Y, all divided by the standard deviation in X.
 - Neat how standard deviation how some real mathematical meaning, eh?
- The intercept is the mean of Y minus the slope times the mean of X
- But Python will do all that for you.

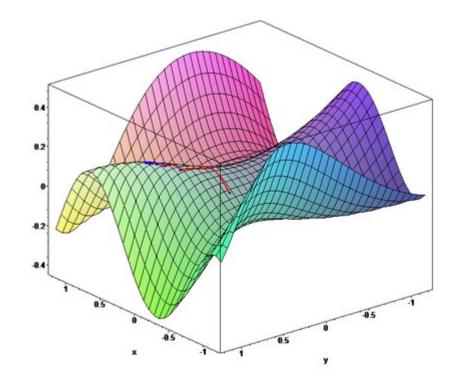


Linear Regression: How does it work?

- Least squares minimizes the sum of squared errors.
- This is the same as maximizing the likelihood of the observed data if you start thinking of the problem in terms of probabilities and probability distribution functions
- This is sometimes called "maximum likelihood estimation"

More than one way to do it

- Gradient Descent is an alternate method to least squares.
- Basically iterates to find the line that best follows the contours defined by the data.
- Can make sense when dealing with 3D data
- Easy to try in Python and just compare the results to least squares
 - But usually least squares is a perfectly good choice.



Measuring error with r-squared

- How do we measure how well our line fits our data?
- R-squared (aka coefficient of determination) measures:

The fraction of the total variation in Y that is captured by the model

Computing r-squared

$$1.0 - \frac{sum\ of\ squared\ errors}{sum\ of\ squared\ variation\ from\ mean}$$

Interpreting r-squared

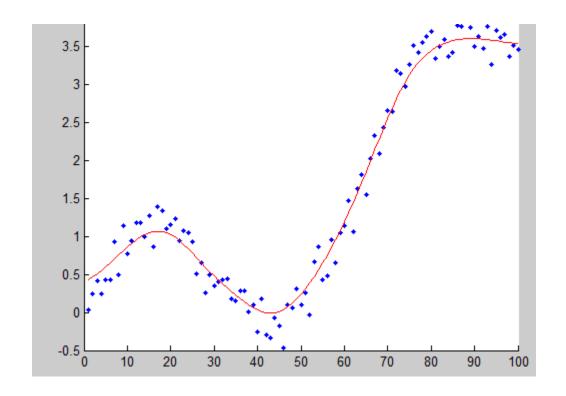
- Ranges from 0 to 1
- 0 is bad (none of the variance is captured), 1 is good (all of the variance is captured).

Let's play with an example.

Polynomial Regression

Why limit ourselves to straight lines?

- Not all relationships are linear.
- Linear formula: y = mx + b
 - This is a "first order" or "first degree"
 polynomial, as the power of x is 1
- Second order polynomial: $y = ax^2 + bx + c$
- Third order: $y = ax^3 + bx^2 + cx + d$
- Higher orders produce more complex curves.



Beware overfitting

- Don't use more degrees than you need
- Visualize your data first to see how complex of a curve there might really be
- Visualize the fit is your curve going out of its way to accommodate outliers?
- A high r-squared simply means your curve fits your *training data* well; but it may not be a good predictor.
- Later we'll talk about more principled ways to detect overfitting (train/test)

Let's play with an example

• numpy.polyfit() makes it easy.

Multiple Regression

Multiple Regression

- What if more than one variable influences the one you're interested in?
- Example: predicting a price for a car based on its many attributes (body style, brand, mileage, etc.)
- If you also have multiple dependent variables – things you're trying to predict – that's "multivariate regression"

Still uses least squares

- We just end up with coefficients for each factor.
 - For example, $price = \alpha + \beta_1$ mileage + β_2 age + β_3 doors
 - These coefficients imply how important each factor is (if the data is all normalized!)
 - Get rid of ones that don't matter!
- Can still measure fit with r-squared
- Need to assume the different factors are not themselves dependent on each other.

Let's dive into an example.

• The statsmodel package makes it easy.

Multi-Level Models

Multi-Level Models

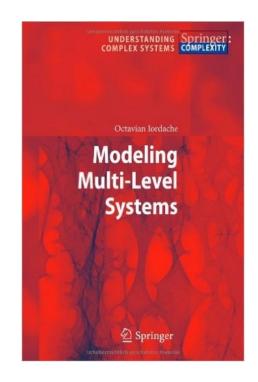
- The concept is that some effects happen at various levels.
- Example: your health depends on a hierarchy of the health of your cells, organs, you as a whole, your family, your city, and the world you live in.
- Your wealth depends on your own work, what your parents did, what your grandparents did, etc.
- Multi-level models attempt to model and account for these interdependencies.

Modeling multiple levels

- You must identify the factors that affect the outcome you're trying to predict at each level.
- For example SAT scores might be predicted based on the genetics of individual children, the home environment of individual children, the crime rate of the neighborhood they live in, the quality of the teachers in their school, the funding of their school district, and the education policies of their state.
- Some of these factors affect more than one level. For example, crime rate might influence the home environment too.

Doing this is hard.

- I just want you to be aware of the concept, as multi-level models showed up on some data science job requirements I've seen.
- You're not ready for it yet. Entire advanced statistics and modeling courses exist on this one topic alone.
- Thick books exist on it too, when you're ready.



Supervised and Unsupervised Machine Learning

And the concept of train/test

What is machine learning?

 Algorithms that can learn from observational data, and can make predictions based on it.

Yeah, that's pretty much what your own brain does too.

Unsupervised Learning

- The model is not given any "answers" to learn from; it must make sense of the data just given the observations themselves.
- Example: group (cluster) some objects together into 2 different sets. But I don't tell you what the "right" set is for any object ahead of time.

Do I want big and small things? Round and square things? Red and blue things? Unsupervised learning could give me any of those results.

Unsupervised Learning

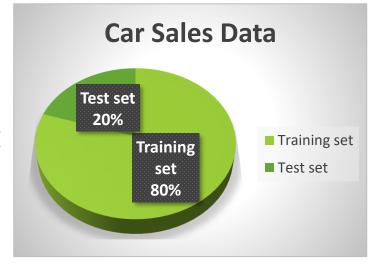
- Unsupervised learning sounds awful! Why use it?
- Maybe you don't know what you're looking for you're looking for *latent variables*.
- Example: clustering users on a dating site based on their information and behavior. Perhaps you'll find there are groups of people that emerge that don't conform to your known stereotypes.
- Cluster movies based on their properties. Perhaps our current concepts of genre are outdated?
- Analyze the text of product descriptions to find the terms that carry the most meaning for a certain category.

Supervised Learning

- In supervised learning, the data the algorithm "learns" from comes with the "correct" answers.
- The model created is then used to predict the answer for new, unknown values.
- Example: You can *train* a model for predicting car prices based on car attributes using historical sales data. That model can then *predict* the optimal price for new cars that haven't been sold before.

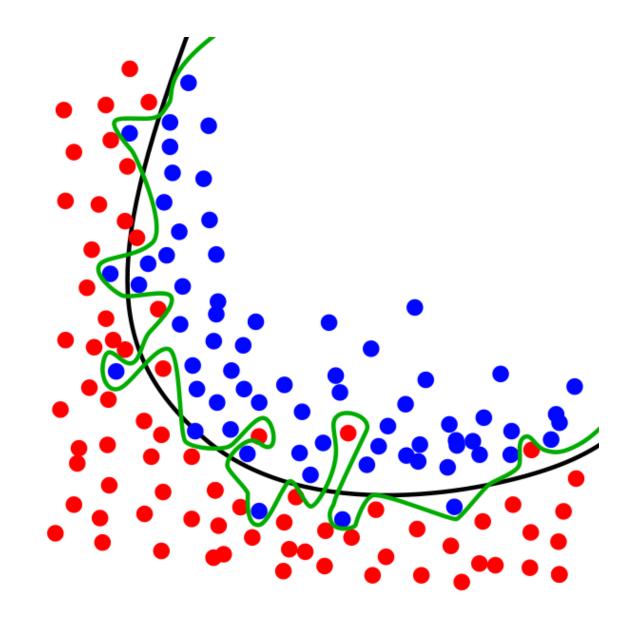
Evaluating Supervised Learning

- If you have a set of training data that includes the value you're trying to predict you don't have to guess if the resulting model is good or not.
- If you have enough training data, you can split it into two parts: a *training* set and a *test* set.
- You then train the model using only the training set
- And then measure (using r-squared or some other metric) the model's accuracy by asking it to predict values for the test set, and compare that to the known, true values.



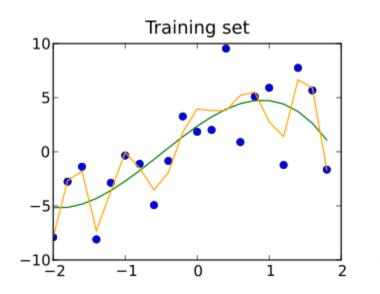
Train / Test in practice

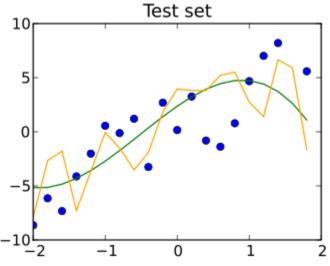
- Need to ensure both sets are large enough to contain representatives of all the variations and outliers in the data you care about
- The data sets must be selected randomly
- Train/test is a great way to guard against overfitting



Train/Test is not Infallible

- Maybe your sample sizes are too small
- Or due to random chance your train and test sets look remarkably similar
- Overfitting can still happen





K-fold Cross Validation

- One way to further protect against overfitting is *K-fold cross validation*
- Sounds complicated. But it's a simple idea:
 - Split your data into K randomly-assigned segments
 - Reserve one segment as your test data
 - Train on each of the remaining K-1 segments and measure their performance against the test set
 - Take the average of the K-1 r-squared scores

Let's go do some training and testing.

Bayesian Methods

Remember Bayes' Theorem?

- $P(A|B) = \frac{P(A)P(B|A)}{P(B)}$
- Let's use it for machine learning! I want a spam classifier.
- Example: how would we express the probability of an email being spam if it contains the word "free"?
- $P(Spam \mid Free) = \frac{P(Spam)P(Free \mid Spam)}{P(Free)}$
- The numerator is the probability of a message being spam and containing the word "free" (this is subtly different from what we're looking for)
- The denominator is the overall probability of an email containing the word "free". (Equivalent to P(Free|Spam)P(Spam) + P(Free|Not Spam)P(Not Spam))
- So together this ratio is the % of emails with the word "free" that are spam.

What about all the other words?

- We can construct P(Spam | Word) for every (meaningful) word we encounter during training
- Then multiply these together when analyzing a new email to get the probability of it being spam.
- Assumes the presence of different words are independent of each other – one reason this is called "Naïve Bayes".

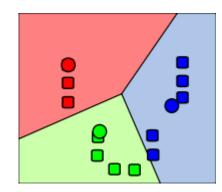
Sounds like a lot of work.

- Scikit-learn to the rescue!
- The CountVectorizer lets us operate on lots of words at once, and MultinomialNB does all the heavy lifting on Naïve Bayes.
- We'll train it on known sets of spam and "ham" (non-spam) emails
 - So this is supervised learning!
- Let's do this

K-Means Clustering

K-Means Clustering

- Attempts to split data into K groups that are closest to K centroids
- Unsupervised learning uses only the positions of each data point
- Can uncover interesting groupings of people / things / behavior
 - Example: Where do millionaires live?
 - What genres of music / movies / etc. naturally fall out of data?
 - Create your own stereotypes from demographic data



K-Means Clustering

- Sounds fancy! Wow! Unsupervised machine learning! Clusters! K!
- Actually how it works is really simple.
 - Randomly pick K centroids (k-means)
 - Assign each data point to the centroid it's closest to
 - Recompute the centroids based on the average position of each centroid's points
 - Iterate until points stop changing assignment to centroids
- If you want to predict the cluster for new points, just find the centroid they're closest to.

Graphical example

K-Means Clustering Gotchas

- Choosing K
 - Try increasing K values until you stop getting large reductions in squared error (distances from each point to their centroids)
- Avoiding local minima
 - The random choice of initial centroids can yield different results
 - Run it a few times just to make sure your initial results aren't wacky
- Labeling the clusters
 - K-Means does not attempt to assign any meaning to the clusters you find
 - It's up to you to dig into the data and try to determine that

Let's cluster stuff.

• Again, scikit-learn makes this easy.

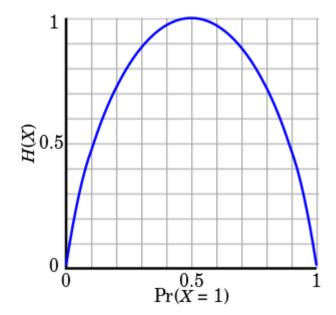
Entropy

Entropy

- A measure of a data set's disorder how same or different it is.
- If we classify a data set into N different classes (example: a data set of animal attributes and their species)
 - The entropy is 0 if all of the classes in the data are the same (everyone is an iguana)
 - The entropy is high if they're all different
- Again, a fancy word for a simple concept.

Computing entropy

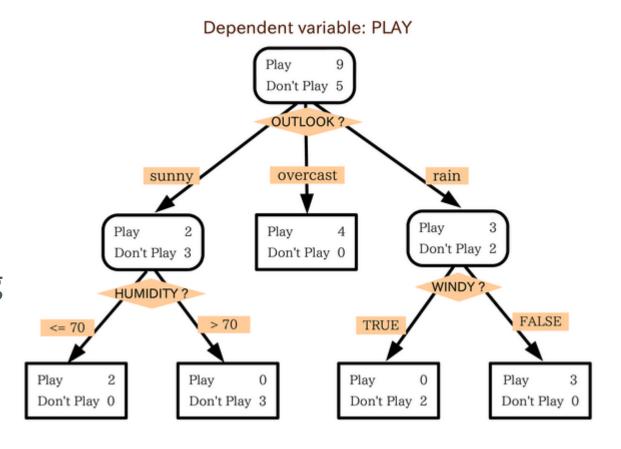
- $H(S) = -p_1 \ln p_1 \cdots p_n \ln p_n$
- p_i represents the proportion of the data labeled for each class
- Each term looks like this:



Decision Trees

Decision Trees

- You can actually construct a flowchart to help you decide a classification for something with machine learning
- This is called a Decision Tree
- Another form of supervised learning
 - Give it some sample data and the resulting classifications
 - Out comes a tree!



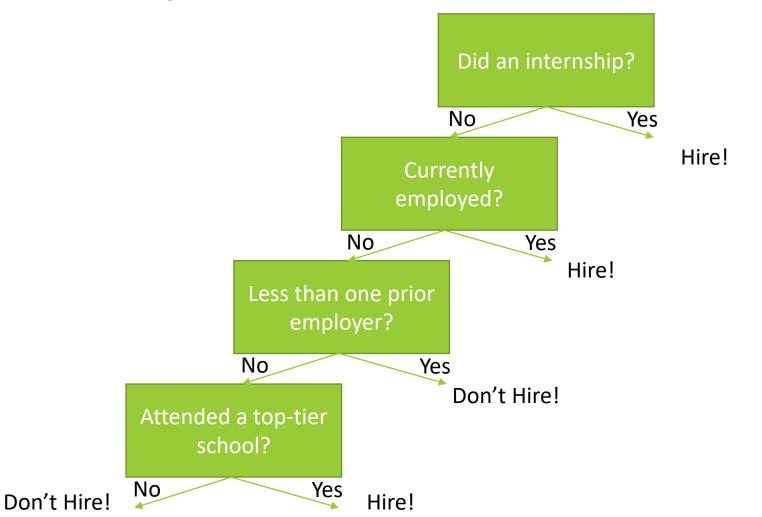
Decision Tree example

- You want to build a system to filter out resumes based on historical hiring data
- You have a database of some important attributes of job candidates, and you know which ones were hired and which ones weren't
- You can train a decision tree on this data, and arrive at a system for predicting whether a candidate will get hired based on it!

Totally Fabricated Hiring Data

Candidate ID	Years Experience	Lmnlovodj	Previous employers	Level of Education	Top-tier school	Interned	Hired
0	10	1	4	0	0	0	1
1	0	0	0	0	1	1	1
2	7	0	6	0	0	0	0
3	2	1	1	1	1	0	1
4	20	0	2	2	1	0	0

Totally Fabricated Should-I-Hire-This-Person Tree



How Decision Trees Work

- At each step, find the attribute we can use to partition the data set to minimize the *entropy* of the data at the next step
- Fancy term for this simple algorithm: ID3
- It is a *greedy algorithm* as it goes down the tree, it just picks the decision that reduce entropy the most at that stage.
 - That might not actually result in an optimal tree.
 - But it works.

Random Forests

- Decision trees are very susceptible to overfitting
- To fight this, we can construct several alternate decision trees and let them "vote" on the final classification
 - Randomly re-sample the input data for each tree (fancy term for this: bootstrap aggregating or bagging)
 - Randomize a subset of the attributes each step is allowed to choose from

Let's go make some trees.

• Yet again, scikit-learn is awesome for this.

Ensemble Learning

Ensemble Learning

- Random Forests was an example of ensemble learning
- It just means we use multiple models to try and solve the same problem, and let them vote on the results.

Ensemble Learning

- Random Forests uses bagging (bootstrap aggregating) to implement ensemble learning
 - Many models are built by training on randomly-drawn subsets of the data
- Boosting is an alternate technique where each subsequent model in the ensemble boosts attributes that address data mis-classified by the previous model
- A bucket of models trains several different models using training data, and picks the one that works best with the test data
- Stacking runs multiple models at once on the data, and combines the results together
 - This is how the Netflix prize was won!

Advanced Ensemble Learning: Ways to Sound Smart

- Bayes Optimal Classifier
 - Theoretically the best but almost always impractical
- Bayesian Parameter Averaging
 - Attempts to make BOC practical but it's still misunderstood, susceptible to overfitting, and often outperformed by the simpler bagging approach
- Bayesian Model Combination
 - Tries to address all of those problems
 - But in the end, it's about the same as using cross-validation to find the best combination of models

XGBoost

XGBoost

- eXtreme Gradient Boosted trees
- Remember boosting is an ensemble method
 - Each tree boosts attributes that led to misclassifications of previous tree
- It is AMAZING
 - Routinely wins Kaggle competitions
 - Easy to use
 - Fast
 - A good choice for an algorithm to start with

```
booster[0]:
0:[f2<2.3499999] yes=1,no=2,missing=1
                  1:leaf=0.425454557
                  2:leaf=-0.218918934
booster[1]:
0:[f2<2.3499999] yes=1,no=2,missing=1
                  1:leaf=-0.212727293
                  2:[f3<1.75] yes=3,no=4,missing=3
                                     3:[f2<4.94999981] yes=5,no=6,missing=5
                                                       5:leaf=0.404698014
                                                       6:leaf=0.0310344752
                                     4:[f2<4.94999981] yes=7,no=8,missing=7
                                                       7:leaf=-0.0360000096
                                                       8:leaf=-0.212101951
booster[2]:
0:[f3<1.6500001] yes=1,no=2,missing=1
                  1:[f2<4.94999981] yes=3,no=4,missing=3
                                     3:leaf=-0.218272462
                                     4:leaf=0.179999992
                  2:[f2<4.85000038] yes=5,no=6,missing=5
                                     5:leaf=0.128571421
                                     6:leaf=0.410059184
booster[3]:
0:[f2<2.3499999] yes=1,no=2,missing=1
                  1:leaf=0.293001503
                  2:leaf=-0.195878834
booster[4]:
0:[f2<2.3499999] yes=1,no=2,missing=1
                  1:leaf=-0.189249262
                  2:[f3<1.75] yes=3,no=4,missing=3
                                     3:[f2<4.94999981] yes=5,no=6,missing=5
                                                       5:leaf=0.278669834
                                                       6:leaf=0.0307718068
                                     4:[f2<4.94999981] yes=7,no=8,missing=7
                                                       7:leaf=-0.0279411841
                                                       8:leaf=-0.189206496
```

Features of XGBoost

- Regularized boosting (prevents overfitting)
- Can handle missing values automatically
- Parallel processing
- Can cross-validate at each iteration
 - Enables early stopping, finding optimal number of iterations
- Incremental training
- Can plug in your own optimization objectives
- Tree pruning
 - Generally results in deeper, but optimized, trees

Using XGBoost

- Pip install xgboost
- Also CLI, C++, R, Julia, JVM interfaces
- It's not just made for scikit_learn, so it has its own interface
 - Uses DMatrix structure to hold features & labels
 - Can create this easily from a numpy array though
 - All parameters passed in via a dictionary
- Call train, then predict. It's easy.

XGBoost Hyperparameters

- Booster
 - gbtree or gblinear
- Objective (ie, multi:softmax, multi:softprob)
- Eta (learning rate adjusts weights on each step)
- Max_depth (depth of the tree)
- Min_child_weight
 - Can control overfitting, but too high will underfit
- ...and many others

XGBoost

- It's almost all that you need to know for ML in practical terms, at least for simple classification or regression problems.
- Let's see it in action.

Support Vector Machines

Support Vector Machines

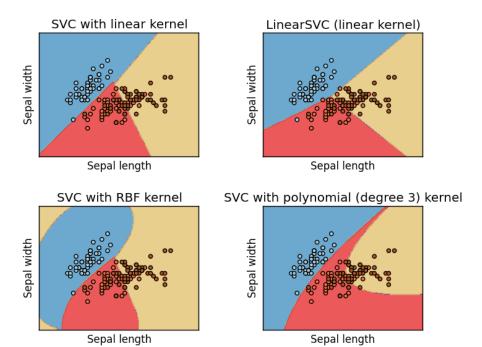
- Works well for classifying higher-dimensional data (lots of features)
- Finds higher-dimensional *support vectors* across which to divide the data (mathematically, these support vectors define hyperplanes. Needless to say I'm not going to get into the mathematical details!)
- Uses something called the *kernel trick* to represent data in higher-dimensional spaces to find hyperplanes that might not be apparent in lower dimensions

Higher dimensions? Hyperplanes? Huh?

- The important point is that SVM's employ some advanced mathematical trickery to cluster data, and it can handle data sets with lots of features.
- It's also fairly expensive the "kernel trick" is the only thing that makes it possible.

Support Vector Classification

- In practice you'll use something called SVC to classify data using SVM.
- You can use different "kernels" with SVC. Some will work better than others for a given data set.

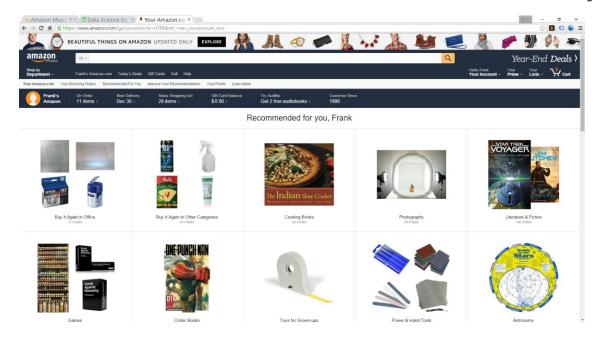


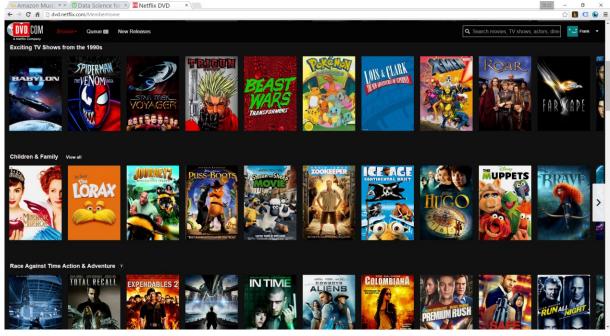
Let's play with SVC's

• Don't even try to do this without scikit-learn.

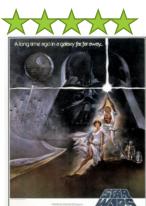
Recommender Systems

What are recommender systems?





- Build a matrix of things each user bought/viewed/rated
- Compute similarity scores between users
- Find users similar to you
- Recommend stuff they bought/viewed/rated that you haven't yet.





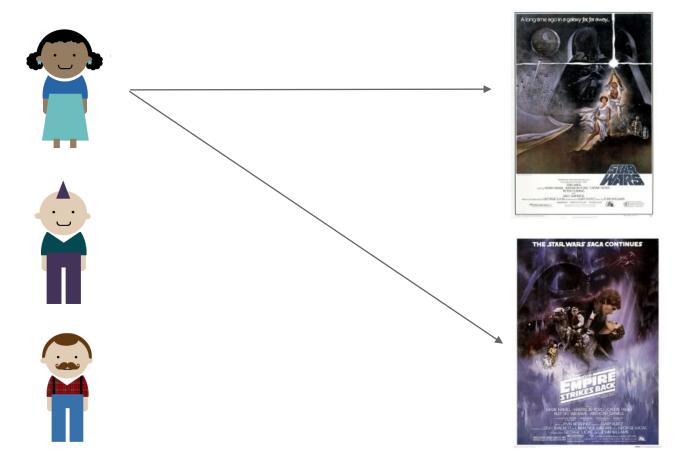
Problems with User-Based CF

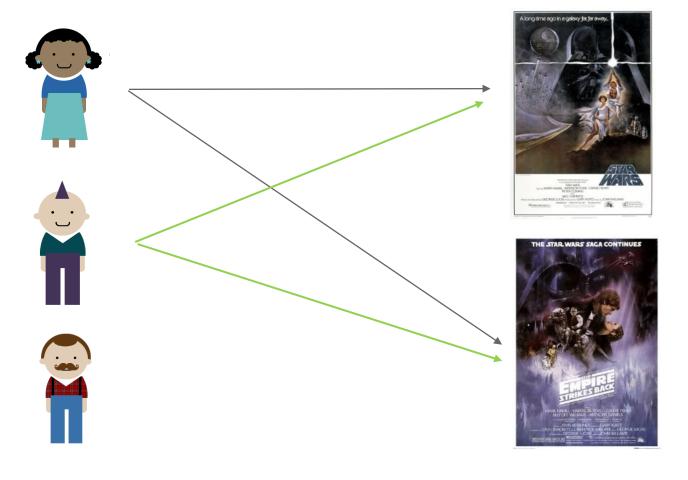
- People are fickle; tastes change
- There are usually many more people than things
- People do bad things

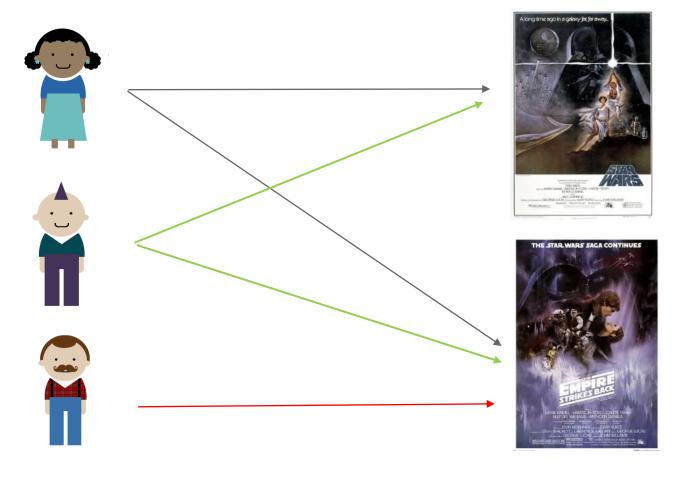
What if we based recommendations on relationships between things instead of people?

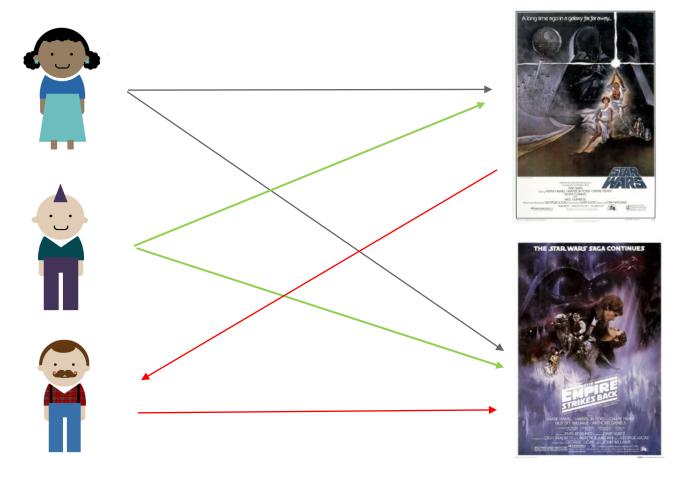
- A movie will always be the same movie it doesn't change
- There are usually fewer things than people (less computation to do)
- Harder to game the system

- Find every pair of movies that were watched by the same person
- Measure the similarity of their ratings across all users who watched both
- Sort by movie, then by similarity strength
- (This is just one way to do it!)









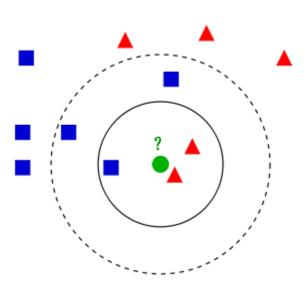
Let's Do This

- Next, we'll use Python to create real "movie similarities" using the real MovieLens data set.
 - In addition to being important for item-based collaborative filtering, these results are valuable in themselves think "people who liked X also liked Y"
- It's real world data, and we'll encounter real world problems
- Then we'll use those results to create movie recommendations for individuals

K-Nearest Neighbor

K-Nearest Neighbor (KNN)

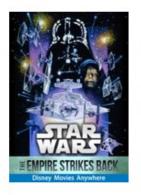
- Used to classify new data points based on "distance" to known data
- Find the K nearest neighbors, based on your distance metric
- Let them all vote on the classification
- That's it!

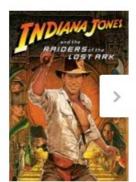


It's Really That Simple

- Although it's one of the simplest machine learning models there is it still qualifies as "supervised learning".
- But let's do something more complex with it
- Movie similarities just based on metadata!

Customers Who Watched This Item Also Watched





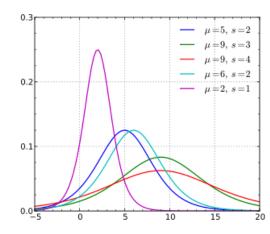
Discrete Choice Models

Discrete Choice Models

- Predict some choice people have between discrete alternatives
 - Do I take the train, bus, or car to work today? (Multinomial choice)
 - Which college will I go to? (Multinomial)
 - Will I cheat on my spouse? (Binary)
- The alternatives must be finite, exhaustive, and mutually exclusive

Discrete Choice Models

- Use some sort of regression on the relevant attributes
 - Attributes of the people
 - Variables of the alternatives
- Generally uses Logit or Probit models
 - Logistic Regression, Probit Model
 - Based on some utility function you define
 - Similar one uses logistic distribution, Probit uses normal distribution. Logistic looks a lot like normal, but with fatter tails (higher kurtosis)



Example

• Will my spouse cheat on me?

The Curse of Dimensionality

Principal Component Analysis

What is the curse of dimensionality?

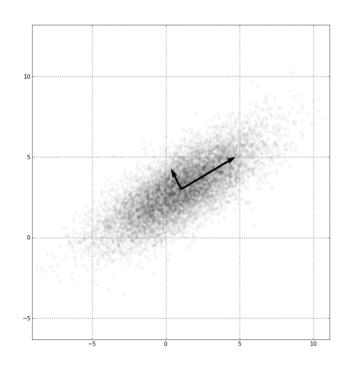
- Many problems can be thought of as having a huge number of "dimesions"
- For example, in recommending movies, the ratings vector for each movie may represent a dimension – every movie is its own dimension!
- That makes your head hurt. It's tough to visualize.
- *Dimensionality reduction* attempts to distill higher-dimensional data down to a smaller number of dimensions, while preserving as much of the variance in the data as possible.

Remember K-Means Clustering?

- This is an example of a dimensionality reduction algorithm.
- It reduces data down to K dimensions.

Another way: Principal Component Analysis (PCA)

- Involves fancy math but at a high level:
- Finds "eigenvectors" in the higher dimensional data
 - These define hyperplanes that split the data while preserving the most variance in it
 - The data gets projected onto these hyperplanes, which represent the lower dimensions you want to represent
 - A popular implementation of this is called Singular Value Decomposition (SVD)
- Also really useful for things like image compression and facial recognition



Example: Visualizing 4-D Iris Flower Data

- The "Iris dataset" comes with scikit-learn
- An Iris flower has petals and sepals (the lower, supportive part of the flower.)
- We know the length and width of the petals and sepals for many Iris specimens
 - That's four dimensions! Ow.
 - We also know the subspecies classification of each flower
- PCA lets us visualize this in 2 dimensions instead of 4, while still preserving variance.

Example: Visualizing 4-D Iris Flower Data

• Yet again, scikit-learn makes this complex technique really easy.

ETL and ELT

Data Warehousing Introduction

What is Data Warehousing?

- A large, centralized database that contains information from many sources
- Often used for business analysis in large corporations or organizations
- Queried via SQL or tools (i.e. Tableau)
- Often entire departments are dedicated to maintaining a data warehouse
 - Data normalization is tricky how does all of this data relate to each other? What views do people need?
 - Maintaining the data feeds is a lot of work
 - Scaling is tricky

ETL: Extract, Transform, Load

- ETL and ELT refer to how data gets into a data warehouse.
- Traditionally, the flow was Extract, Transform, Load:
 - Raw data from operational systems is first periodically extracted
 - Then, the data is transformed into the schema needed by the DW
 - Finally, the data is *load*ed into the data warehouse, already in the structure needed
- But what if we're dealing with "big data"? That transform step can turn into a big problem.

ELT: Extract, Load, Transform

- Today, a huge Oracle instance isn't the only choice for a large data warehouse
- Things like Hive let you host massive databases on a Hadoop cluster
- Or, you might store it in a large, distributed NoSQL data store
 ...and query it using things like Spark or MapReduce
- The scalability of Hadoop lets you flip the loading process on its head
 - Extract raw data as before
 - Load it in as-is
 - Then use the power of Hadoop to transform it in-place

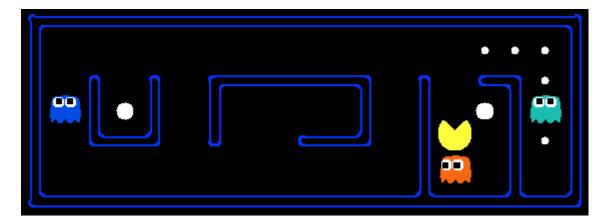
Lots more to explore

- Data warehousing is a discipline in itself, too big too cover here
- Check out other courses on Big Data, Spark, and MapReduce
 - We will cover Spark in more depth later in this course.

Reinforcement Learning

Reinforcement Learning

- You have some sort of agent that "explores" some space
- As it goes, it learns the value of different state changes in different conditions
- Those values inform subsequent behavior of the agent
- Examples: Pac-Man, Cat & Mouse game
- Yields fast on-line performance once the space has been explored

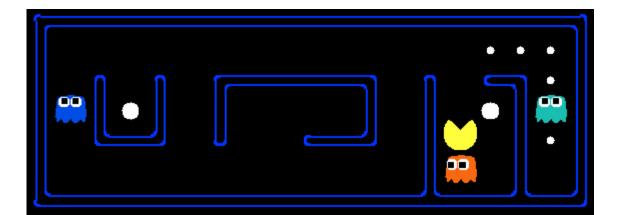


Q-Learning

- A specific implementation of reinforcement learning
- You have:
 - A set of environmental states s
 - A set of possible actions in those states a
 - A value of each state/action Q
- Start off with Q values of 0
- Explore the space
- As bad things happen after a given state/action, reduce its Q
- As rewards happen after a given state/action, increase its Q

Q-Learning

- What are some state/actions here?
 - Pac-man has a wall to the West
 - Pac-man dies if he moves one step South
 - Pac-man just continues to live if going North or East
- You can "look ahead" more than one step by using a discount factor when computing Q (here s is previous state, s' is current state)
 - $\mathbb{Q}(s,a) += \operatorname{discount} * (\operatorname{reward}(s,a) + \max(Q(s')) Q(s,a))$



The exploration problem

- How do we efficiently explore all of the possible states?
 - Simple approach: always choose the action for a given state with the highest Q. If there's a tie, choose at random
 - But that's really inefficient, and you might miss a lot of paths that way
 - Better way: introduce an epsilon term
 - If a random number is less than epsilon, don't follow the highest Q, but choose at random
 - That way, exploration never totally stops
 - Choosing epsilon can be tricky

Fancy Words

- Markov Decision Process
 - From Wikipedia: Markov decision processes (MDPs) provide a mathematical framework for modeling decision making in situations where outcomes are partly <u>random</u> and partly under the control of a decision maker.
 - Sound familiar? MDP's are just a way to describe what we just did using mathematical notation.
 - States are still described as s and s'
 - State transition functions are described as $P_a(s,s')$
 - Our "Q" values are described as a reward function $R_a(s,s')$
- Even fancier words! An MDP is a discrete time stochastic control process.

More Fancy Words

- Dynamic Programming
 - Prom Wikipedia: **dynamic programming** is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions ideally, using a memory-based data structure. The next time the same subproblem occurs, instead of recomputing its solution, one simply looks up the previously computed solution, thereby saving computation time at the expense of a (hopefully) modest expenditure in storage space.
 - Sound familiar?

So to recap

- You can make an intelligent Pac-Man in a few steps:
 - Have it semi-randomly explore different choices of movement (actions) given different conditions (states)
 - Keep track of the reward or penalty associated with each choice for a given state/action (Q)
 - Use those stored Q values to inform its future choices
- Pretty simple concept. But hey, now you can say you understand reinforcement learning, Q-learning, Markov Decision Processes, and Dynamic Programming!

Implementing Reinforcement Learning

- Python Markov Decision Process Toolbox:
 - http://pymdptoolbox.readthedocs.org/en/latest/api/mdp.html
- Cat & Mouse Example:
 - https://github.com/studywolf/blog/tree/master/RL/Cat%20vs%20Mouse% 20exploration
- Pac-Man Example:
 - https://inst.eecs.berkeley.edu/~cs188/sp12/projects/reinforcement/reinforcement.html

Confusion Matrix

Sometimes accuracy doesn't tell the whole story

- A test for a rare disease can be 99.9% accurate by just guessing "no" all the time
- We need to understand true positives and true negative, as well as false positives and false negatives.
- A confusion matrix shows this.

Binary confusion matrix

	Actual YES	Actual NO
Predicted YES	TRUE POSITIVES	FALSE POSITIVES
Predicted NO	FALSE NEGATIVES	TRUE NEGATIVE

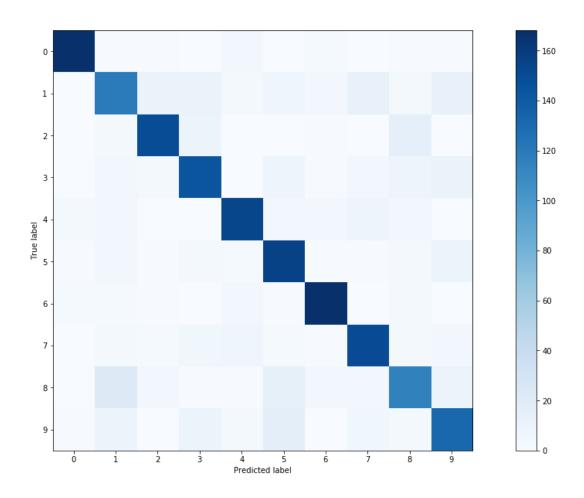
Image has cat?

	Actual cat	Actual not cat
Predicted cat	50	5
Predicted not cat	10	100

Another format

	Predicted NO	Predicted YES	
Actual NO	50	5	55
Actual YES	10	100	110
	60	105	

Multi-class confusion matrix + heat map



Measuring your Models

Remember our friend the confusion matrix

	Actual YES	Actual NO
Predicted YES	TRUE POSITIVES	FALSE POSITIVES
Predicted NO	FALSE NEGATIVES	TRUE NEGATIVE

Recall

TRUE POSITIVES

TRUE POSITIVES+FALSE NEGATIVES

- AKA Sensitivity, True Positive rate, Completeness
- Percent of positives correctly predicted
- Good choice of metric when you care a lot about false negatives
 - i.e., fraud detection

Recall example

	Actual fraud	Actual not fraud
Predicted fraud	5	20
Predicted not fraud	10	100

Recall =
$$TP/(TP+FN)$$

Recall =
$$5/(5+10) = 5/15 = 1/3 = 33\%$$

Precision

TRUE POSITIVES

TRUE POSITIVES+FALSE POSITIVES

- AKA Correct Positives
- Percent of relevant results
- Good choice of metric when you care a lot about false positives
 - i.e., medical screening, drug testing

Precision example

	Actual fraud	Actual not fraud
Predicted fraud	5	20
Predicted not fraud	10	100

Other metrics

- Specificity = $\frac{TN}{TN+FP}$ = "True negative rate"
- F1 Score

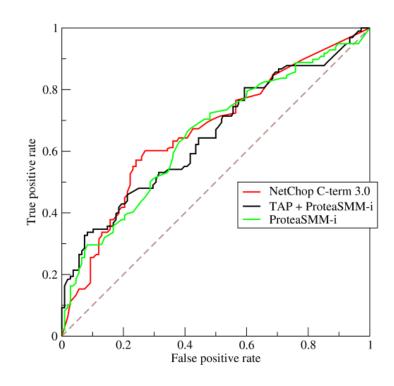
$$\frac{2TP}{2TP+FP+FN}$$

$$2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$$

- Harmonic mean of precision and sensitivity
- When you care about precision AND recall
- RMSE
 - Root mean squared error, exactly what it sounds like
 - Accuracy measurement
 - Only cares about right & wrong answers

ROC Curve

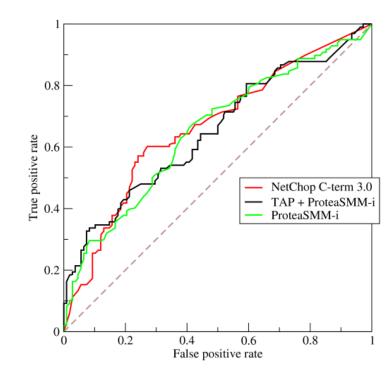
- Receiver Operating Characteristic Curve
- Plot of true positive rate (recall) vs. false positive rate at various threshold settings.
- Points above the diagonal represent good classification (better than random)
- Ideal curve would just be a point in the upper-left corner
- The more it's "bent" toward the upper-left, the better



BOR at the English language Wikipedia [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0/)]

AUC

- The area under the ROC curve is... wait for it...
- Area Under the Curve (AUC)
- Equal to probability that a classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one
- ROC AUC of 0.5 is a useless classifier, 1.0 is perfect
- Commonly used metric for comparing classifiers



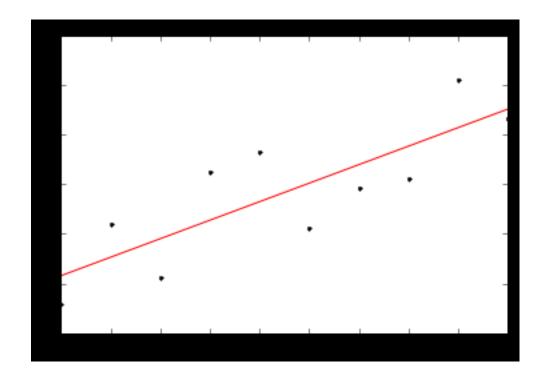
The Bias / Variance Tradeoff

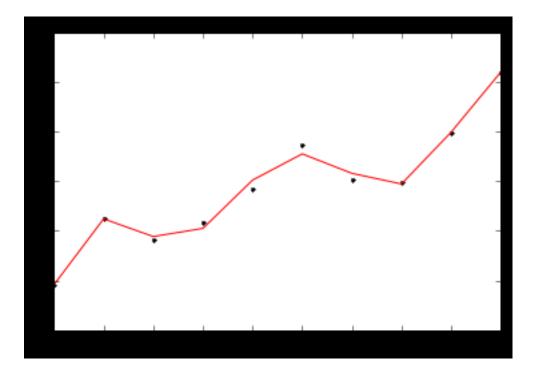
Bias and Variance

- Bias is how far removed the mean of your predicted values is from the "real" answer
- Variance is how scattered your predicted values are from the "real" answer
- Describe the bias and variance of these four cases (assuming the center is the correct result)

Often you need to choose between bias and variance

• It comes down to overfitting vs underfitting your data





But what you really care about is error

- Bias and variance both contribute to error
 - $Error = Bias^2 + Variance$
- But it's error you want to minimize, not bias or variance specifically
- A complex model will have high variance and low bias
- A too-simple model will have low variance and high bias
- But both may have the same error the optimal complexity is in the middle

Tying it to earlier lessons

- Increasing K in K-Nearest-Neighbors decreases variance and increases bias (by averaging together more neighbors)
- A single decision tree is prone to overfitting high variance
 - But a random forest decreases that variance.

Avoiding Overfitting

Using K-Fold Cross Validation

Review: K-Fold Cross Validation

- One way to further protect against overfitting is K-fold cross validation
- Sounds complicated. But it's a simple idea:
 - Split your data into K randomly-assigned segments
 - Reserve one segment as your test data
 - Train on the combined remaining K-1 segments and measure their performance against the test set
 - Repeat for each segment
 - Take the average of the K r-squared scores
- Prevents you from overfitting to a single train/test split

Using K-Fold Cross Validation

- Scikit-learn makes this really easy. Even easier than just a single train/test split.
- In practice, you need to try different variations of your model and measure the mean accuracy using K-Fold Cross validation until you find a sweet spot

Let's Play

• Use K-Fold Cross Validation with a SVC model of Iris classification. We'll see that without K-Fold, we could overfit the model.

Cleaning Your Data

Cleaning your Data

- The reality is, much of your time as a data scientist will be spent preparing and "cleaning" your data
 - Outliers
 - Missing Data
 - Malicious Data
 - Erroneous Data
 - Irrelevant Data
 - Inconsistent Data
 - Formatting

Garbage In, Garbage Out

- Look at your data! Examine it!
- Question your results!
 - And always do this not just when you don't get a result that you like!

Let's analyze some web log data.

- All I want is the most-popular pages on my non-profit news website.
- How hard can that be?

DECEMBER 29, 2015

News that won't crush your soul.

COMICS + MORE WEATHER **TECHNOLOGY ENTERTAINMENT** TRAVEL SPORTS BUSINESS ABOUT

Technology

the Internet, photography took us some weird and wonderful places this year. The post The Best WIRED Photo Stories of the Year appeared first on WIRED.

Tue, Dec 29, 2015 Source: Wired

How a Nation of Tech Copycats Transformed Into a Hub for Innovation

China, once known more for manufacturing stuff for

Latest Stories

Reds deal Chapman to Dodgers for 2 prospects

CBS Sports

Ben Silverman Talks 'Dream and Harsh

Nightmare' of His NBC Tenure

Iraqi state TV: Prime Minister Haider al-Abadi is in Ramadi to hail city's liberation

Washington Post World

Bennet Omalu, doctor who raised alarm bells about NFL head injuries, on racism in U.S. science

Washington Post National

Valeant CEO takes medical leave of absence

Normalizing Numerical Data

The importance of normalizing data

- If your model is based on several numerical attributes are they comparable?
 - Example: ages may range from 0-100, and incomes from 0-billions
 - Some models may not perform well when different attributes are on very different scales
 - It can result in some attributes counting more than others
 - Bias in the attributes can also be a problem.

Examples

- Scikit-learn's PCA implementation has a "whiten" option that does this for you. Use it.
- Scikit-learn has a preprocessing module with handy normalize and scale functions
- Your data may have "yes" and "no" that needs to be converted to "1" and "0"

Read the docs

- Most data mining and machine learning techniques work fine with raw, un-normalized data
- But double check the one you're using before you start.
- Don't forget to re-scale your results when you're done!

Dealing with Outliers

Dealing with Outliers

- Sometimes it's appropriate to remove outliers from your training data
- Do this responsibly! Understand why you are doing this.
- For example: in collaborative filtering, a single user who rates thousands of movies could have a big effect on everyone else's ratings. That may not be desirable.
- Another example: in web log data, outliers may represent bots or other agents that should be discarded.
- But if someone really wants the mean income of US citizens for example, don't toss out billionaires just because you want to.

Dealing with Outliers

- Our old friend standard deviation provides a principled way to classify outliers.
- Find data points more than some multiple of a standard deviation in your training data.
- What multiple? You just have to use common sense.

Let's play with some data.

Feature Engineering

What is feature engineering?

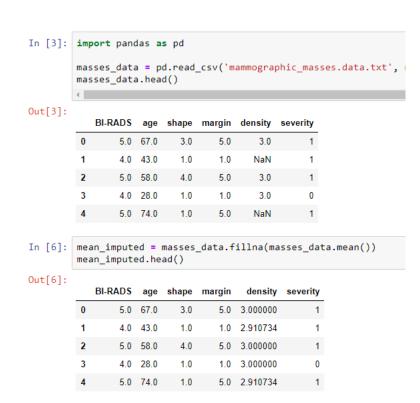
- Applying your knowledge of the data and the model you're using to create better features to train your model with.
 - Which features should I use?
 - Do I need to transform these features in some way?
 - How do I handle missing data?
 - Should I create new features from the existing ones?
- You can't just throw in raw data and expect good results
- This is the art of machine learning; where expertise is applied
- "Applied machine learning is basically feature engineering" Andrew Ng

The Curse of Dimensionality

- Too many features can be a problem leads to sparse data
- Every feature is a new dimension
- Much of feature engineering is selecting the features most relevant to the problem at hand
 - This often is where domain knowledge comes into play
- Unsupervised dimensionality reduction techniques can also be employed to distill many features into fewer features
 - PCA
 - K-Means

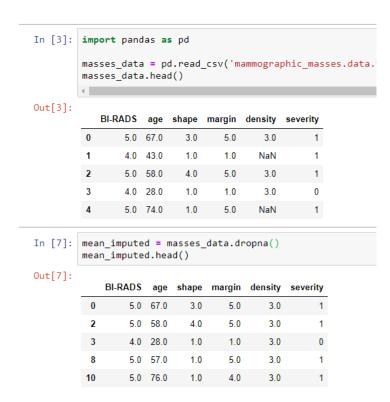
Imputing Missing Data: Mean Replacement

- Replace missing values with the mean value from the rest of the column (columns, not rows! A column represents a single feature; it only makes sense to take the mean from other samples of the same feature.)
- Fast & easy, won't affect mean or sample size of overall data set
- Median may be a better choice than mean when outliers are present
- But it's generally pretty terrible.
 - Only works on column level, misses correlations between features
 - Can't use on categorical features (imputing with most frequent value can work in this case, though)
 - Not very accurate



Imputing Missing Data: Dropping

- If not many rows contain missing data...
 - ...and dropping those rows doesn't bias your data...
 - ...and you don't have a lot of time...
 - ...maybe it's a reasonable thing to do.
- But, it's never going to be the right answer for the "best" approach.
- Almost anything is better. Can you substitute another similar field perhaps? (i.e., review summary vs. full text)



Imputing Missing Data: Machine Learning

- KNN: Find K "nearest" (most similar) rows and average their values
 - Assumes numerical data, not categorical
 - There are ways to handle categorical data (Hamming distance), but categorical data is probably better served by...
- Deep Learning
 - Build a machine learning model to impute data for your machine learning model!
 - Works well for categorical data. Really well. But it's complicated.
- Regression
 - Find linear or non-linear relationships between the missing feature and other features
 - Most advanced technique: MICE (Multiple Imputation by Chained Equations)

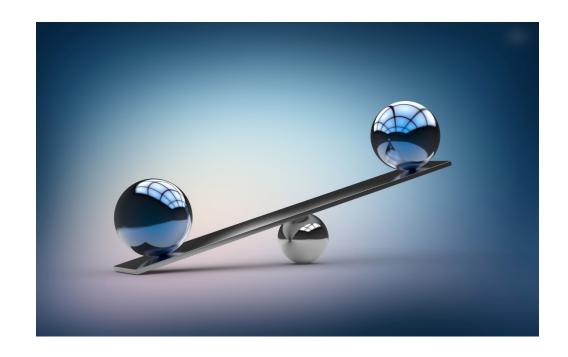
Imputing Missing Data: Just Get More Data

- What's better than imputing data? Getting more real data!
- Sometimes you just have to try harder or collect more data

Handling Unbalanced Data

What is unbalanced data?

- Large discrepancy between "positive" and "negative" cases
 - i.e., fraud detection. Fraud is rare, and most rows will be not-fraud
 - Don't let the terminology confuse you; "positive" doesn't mean "good"
 - It means the thing you're testing for is what happened.
 - If your machine learning model is made to detect fraud, then fraud is the positive case.
- Mainly a problem with neural networks



Oversampling

- Duplicate samples from the minority class
- Can be done at random



Undersampling

- Instead of creating more positive samples, remove negative ones
- Throwing data away is usually not the right answer
 - Unless you are specifically trying to avoid "big data" scaling issues



SMOTE

- Synthetic Minority Over-sampling TEchnique
- Artificially generate new samples of the minority class using nearest neighbors
 - Run K-nearest-neighbors of each sample of the minority class
 - Create a new sample from the KNN result (mean of the neighbors)
- Both generates new samples and undersamples majority class
- Generally better than just oversampling

Adjusting thresholds

- When making predictions about a classification (fraud / not fraud), you have some sort of threshold of probability at which point you'll flag something as the positive case (fraud)
- If you have too many false positives, one way to fix that is to simply increase that threshold.
 - Guaranteed to reduce false positives
 - But, could result in more false negatives

Binning

- Bucket observations together based on ranges of values.
- Example: estimated ages of people
 - Put all 20-somethings in one classification, 30-somethings in another, etc.
- Quantile binning categorizes data by their place in the data distribution
 - Ensures even sizes of bins
- Transforms numeric data to ordinal data
- Especially useful when there is uncertainty in the measurements

Transforming

- Feature data with an exponential trend may benefit from a logarithmic transform
- Applying some function to a feature to make it better suited for training
- Example: YouTube recommendations
 - A numeric feature x is also represented by x^2 and \sqrt{x}
 - This allows learning of super and sub-linear functions
 - (ref: https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45530.pdf)

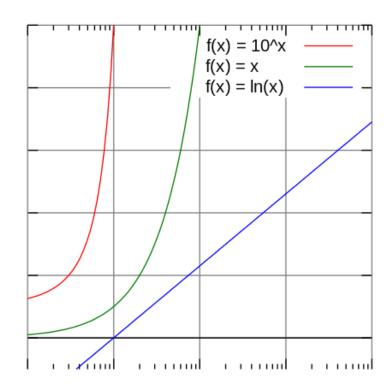
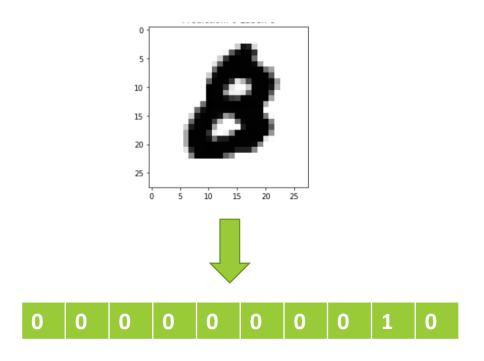


Image: By Autopilot - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=10733854

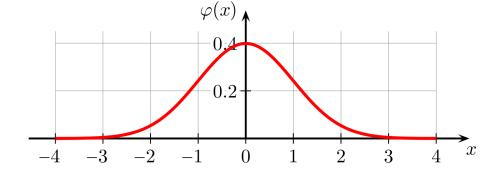
Encoding

- Transforming data into some new representation required by the model
- One-hot encoding
 - Create "buckets" for every category
 - The bucket for your category has a 1,
 all others have a 0
 - Very common in deep learning, where categories are represented by individual output "neurons"



Scaling / Normalization

- Some models prefer feature data to be normally distributed around 0 (most neural nets)
- Most models require feature data to at least be scaled to comparable values
 - Otherwise features with larger magnitudes will have more weight than they should
 - Example: modeling age and income as features – incomes will be much higher values than ages
- Scikit_learn has a preprocessor module that helps (MinMaxScaler, etc)
- Remember to scale your results back up



Geek3 [CC BY 3.0 (https://creativecommons.org/licenses/by/3.0)]

Shuffling

- Many algorithms benefit from shuffling their training data
- Otherwise they may learn from residual signals in the training data resulting from the order in which they were collected

Installing Apache Spark on Windows

Installing Spark on Windows

- Install a JDK
- Install Python (but you should already have this)
- Install a pre-built version of Spark for Hadoop
- Create a conf/log4j.properties file to change the warning level
- Add a SPARK_HOME environment variable
- Add %SPARK_HOME%\bin to your PATH
- Set HADOOP_HOME to c:\winutils
- Install winutils.exe to c:\winutils\bin

Installing Spark on other OS's

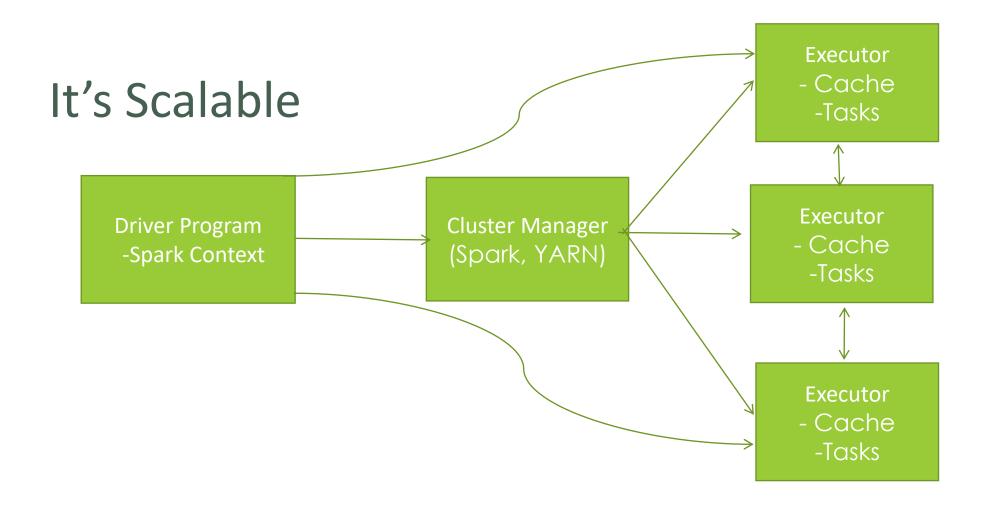
- Pretty much the same, but look up how to set environment variables on your OS
- Winutils.exe not needed of course

Let's Do It

Spark Introduction

What is Spark?

• "A fast and general engine for large-scale data processing"



It's Fast

- "Run programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk."
- DAG Engine (directed acyclic graph) optimizes workflows

It's Hot

- Amazon
- Ebay: log analysis and aggregation
- NASA JPL: Deep Space Network
- Groupon
- TripAdviser
- Yahoo
- Many others: https://cwiki.apache.org/confluence/display/SPARK/Power ed+By+Spark

It's Not That Hard

- Code in Python, Java, or Scala
- Built around one main concept: the Resilient Distributed Dataset (RDD)

Components of Spark

Spark Streaming Spark SQL MLLib GraphX

SPARK CORE

Python vs. Scala

- Why Python?
 - No need to compile, manage dependencies, etc.
 - Less coding overhead
 - You already know Python
 - Lets us focus on the concepts instead of a new language
- But...
 - Scala is probably a more popular choice with Spark.
 - Spark is built in Scala, so coding in Scala is "native" to Spark
 - New features, libraries tend to be Scala-first.

Fear Not

• Python and Scala look very similar in Spark.

Python code to square numbers in a data set:

```
nums = sc.parallelize([1, 2, 3, 4])
squared = nums.map(lambda x: x * x).collect()
```

Scala code to square numbers in a data set:

```
val nums = sc.parallelize(List(1, 2, 3, 4))
val squared = nums.map(x => x * x).collect()
```

Resilient Distributed Datasets (RDDs)

RDD

- Resilient
- Distributed
- Dataset

The SparkContext

- Created by your driver program
- Is responsible for making RDD's resilient and distributed!
- Creates RDD's
- The Spark shell creates a "sc" object for you

Creating RDD's

- nums = parallelize([1, 2, 3, 4])
- sc.textFile("file:///c:/users/frank/gobs-o-text.txt")
 - or s3n:// , hdfs://
- hiveCtx = HiveContext(sc) rows = hiveCtx.sql("SELECT name, age FROM users")
- Can also create from:
 - JDBC
 - Cassandra
 - HBase
 - Elastisearch
 - JSON, CSV, sequence files, object files, various compressed formats

Transforming RDD's

- map
- flatmap
- filter
- distinct
- sample
- union, intersection, subtract, cartesian

Map() example

- rdd = sc.parallelize([1, 2, 3, 4])
- rdd.map(lambda x: x*x)
- This yields 1, 4, 9, 16

What's that lambda thing?

- Many RDD methods accept a function as a parameter
- rdd.map(lambda x: x*x)
- Is the same thing as
- def squareIt(x):
- return x*x
- rdd.map(squareIt)
- There, you now understand functional programming.

RDD Actions

- collect
- count
- countByValue
- take
- top
- reduce
- ... and more ...

Lazy Evaluation

 Nothing actually happens in your driver program until an action is called!

Introducing MLLib

Some MLLib Capabilities

- Feature extraction
 - Term Frequency / Inverse Document Frequency useful for search
- Basic statistics
 - Chi-squared test, Pearson or Spearman correlation, min, max, mean, variance
- Linear regression, logistic regression
- Support Vector Machines
- Naïve Bayes classifier
- Decision trees
- K-Means clustering
- Principal component analysis, singular value decomposition
- Recommendations using Alternating Least Squares

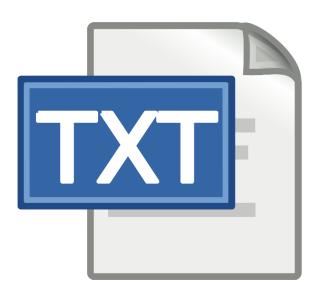
Special MLLib Data Types

- Vector (dense or sparse)
- LabeledPoint
- Rating

TF-IDF

TF-IDF

- Stands for Term Frequency and Inverse Document Frequency
- Important data for search figures out what terms are most relevant for a document
- Sounds fancy!



TF-IDF Explained

- Term Frequency just measures how often a word occurs in a document
 - A word that occurs frequently is probably important to that document's meaning
- Document Frequency is how often a word occurs in an entire set of documents, i.e., all of Wikipedia or every web page
 - This tells us about common words that just appear everywhere no matter what the topic, like "a", "the", "and", etc.

TF-IDF Explained

• So a measure of the relevancy of a word to a document might be:

Term Frequency

Document Frequency

Or: Term Frequency * Inverse Document Frequency

That is, take how often the word appears in a document, over how often it just appears everywhere. That gives you a measure of how important and unique this word is for this document

TF-IDF In Practice

- We actually use the log of the IDF, since word frequencies are distributed exponentially. That gives us a better weighting of a words overall popularity
- TF-IDF assumes a document is just a "bag of words"
 - Parsing documents into a bag of words can be most of the work
 - Words can be represented as a hash value (number) for efficiency
 - What about synonyms? Various tenses? Abbreviations? Capitalizations? Misspellings?
- Doing this at scale is the hard part
 - That's where Spark comes in!

Using TF-IDF

- A very simple search algorithm could be:
 - Compute TF-IDF for every word in a corpus
 - For a given search word, sort the documents by their TF-IDF score for that word
 - Display the results

Let's use TF-IDF on Wikipedia

Deploying models for real-time use

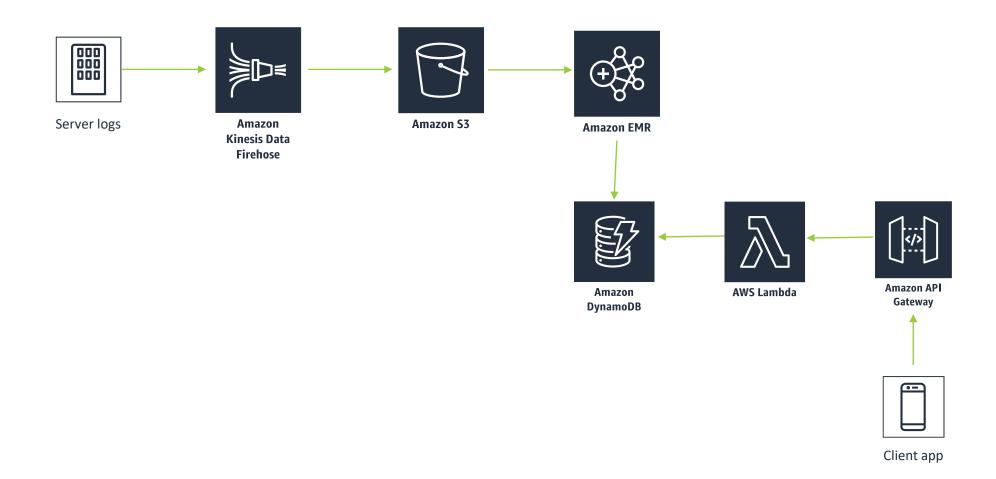
How do I use my model in an app?

- Your external apps can't just run a notebook!
- Separate your training from your predictions
 - Train the model periodically offline
 - Push the model or its results to a web service
 - Your app calls the web service

Example: Google Cloud ML

- Dump your trained classifier using sklearn.externals
 - from sklearn.externals import joblib joblib.dump(clf, 'model.joblib')
- Upload model.joblib to Google cloud storage, specifying the scikit-learn framework
- Cloud ML Engine exposes a REST API that you can call to make predictions in real-time

Example: AWS (recommender system)



Other approaches

- Roll your own web service with Flask or another framework
 - Then you have servers to provision and maintain :/
- Go all-in with a platform

Amazon SageMaker

Amazon Comprehend

Amazon Lex

Amazon Polly

Amazon Rekognition

Amazon Rekognition Image

Amazon Rekognition Video

Amazon Translate

Amazon Transcribe

AWS Deep Learning AMIs

AWS DeepLens

A/B Tests

What is an A/B test?

- A controlled experiment, usually in the context of a website
- You test the performance of some change to your website (the variant) and measure conversion relative to your unchanged site (the control.)

PURCHASE

SALES INFORMATION FOR SILVERLINING AND TRITON SDK LICENSES

PRO LICENSES

Our software library licenses feature:

- Royalty-free distribution linked into one title or project on one platform
- 3 months of technical support and maintenance
- · A personalized license code to unlock our trial SDK's for your project

PURCHASE

SALES INFORMATION FOR SILVERLINING AND TRITON SDK LICENSES

PRO LICENSES

Our software library licenses feature:

PURCHASE A

- · Royalty-free distribution linked into one title or project on one platform
- 3 months of technical support and maintenance
- A personalized license code to unlock our trial SDK's for your project

What sorts of things can you test?

- Design changes
- UI flow
- Algorithmic changes
- Pricing changes
- You name it

How do you measure conversion

- Ideally choose what you are trying to influence
 - Order amounts
 - Profit
 - Ad clicks
 - Order quantity
- But attributing actions downstream from your change can be hard
 - Especially if you're running more than one experiment

Variance is your Enemy

Common mistake:

- Run a test for some small period of time that results in a few purchases to analyze
- You take the mean order amount from A and B, and declare victory or defeat
- But, there's so much random variation in order amounts to begin with, that your result was just based on chance.
- You then fool yourself into thinking some change to your website, which could actually be harmful, has made tons of money.

Variance is your Enemy

- Sometimes you need to also look at conversion metrics with less variance
- Order quantities vs. order dollar amounts, for example

T-Tests and P-Values

Determining significance

- So, how do we know if a result is likely to be "real" as opposed to just random variation?
- T-tests and P-values

The T-Statistic

- A measure of the difference between the two sets expressed in units of standard error
- The size of the difference relative to the variance in the data
- A high t value means there's probably a real difference between the two sets
- Assumes a normal distribution of behavior
 - This is a good assumption if you're measuring revenue as conversion
 - See also: Fisher's exact test (for clickthrough rates), E-test (for transactions per user) and chi-squared test (for product quantities purchased)

The P-Value

- Think of it as the probability of A and B satisfying the "null hypothesis"
- So, a low P-Value implies significance.
- It is the probability of an observation lying at an extreme t-value assuming the null hypothesis

Using P-values

- Choose some threshold for "significance" before your experiment
 - **1**%? 5%?
- When your experiment is over:
 - Measure your P-value
 - If it's less than your significance threshold, then you can reject the null hypothesis
 - If it's a positive change, roll it out
 - If it's a negative change, discard it before you lose more money.

Let's work through an example.

How Long Do I Run an Experiment?

How do I know when I'm done with an A/B test?

- You have achieved significance (positive or negative)
- You no longer observe meaningful trends in your p-value
 - That is, you don't see any indication that your experiment will "converge" on a result over time
- You reach some pre-established upper bound on time

A/B Test Gotchas

Correlation does not imply causation

- Even your low p-value score on a well-designed experiment does not imply causation!
 - It could still be random chance
 - Other factors could be at play
 - It's your duty to ensure business owners understand this

Novelty Effects

- Changes to a website will catch the attention of previous users who are used to the way it used to be
 - They might click on something simply because it is new
 - But this attention won't last forever
- Good idea to re-run experiments much later and validate their impact
 - Often the "old" website will outperform the "new" one after awhile, simply because it is a change

Seasonal Effects

- An experiment run over a short period of time may only be valid for that period of time
 - Example: Consumer behavior near Christmas is very different than other times of year
 - An experiment run near Christmas may not represent behavior during the rest of the year

Selection Bias

- Sometimes your random selection of customers for A or B isn't really random
 - For example: assignment is based somehow on customer ID
 - But customers with low ID's are better customers than ones with high ID's
- Run an A/A test periodically to check
- Audit your segment assignment algorithms

Data Pollution

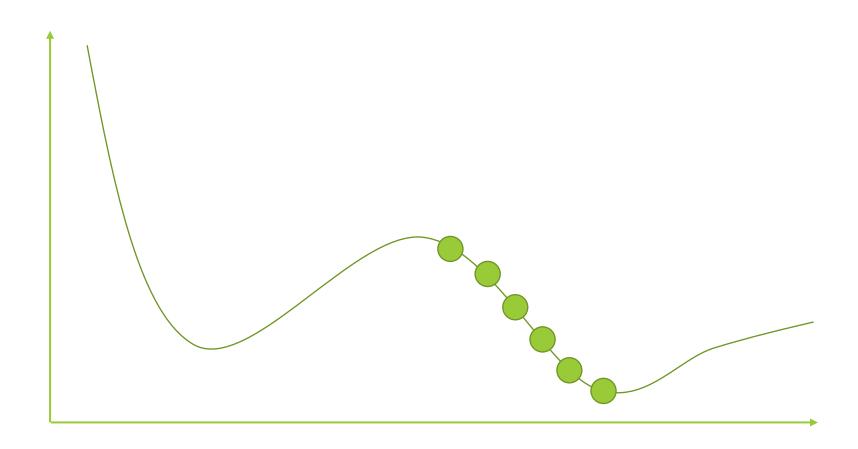
- Are robots (both self-identified and malicious) affecting your experiment?
 - Good reason to measure conversion based on something that requires spending real money
- More generally, are outliers skewing the result?

Attribution Errors

- Often there are errors in how conversion is attributed to an experiment
- Using a widely used A/B test platform can help mitigate that risk
 - If your is home-grown, it deserves auditing
- Watch for "gray areas"
 - Are you counting purchases toward an experiment within some given timeframe of exposure to it? Is that time too large?
 - Could other changes downstream from the change you're measuring affect your results?
 - Are you running multiple experiments at once?

deep learning prerequisites

gradient descent



autodiff

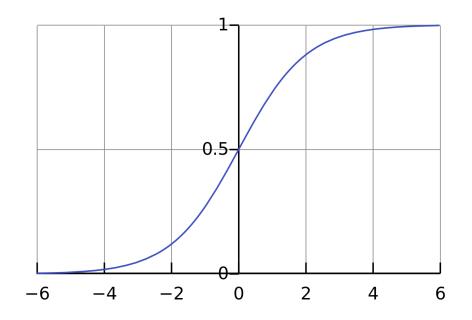
- Gradient descent requires knowledge of, well, the gradient from your cost function (MSE)
- Mathematically we need the first partial derivatives of all the inputs
 - This is hard and inefficient if you just throw calculus at the problem
- Reverse-mode autodiff to the rescue!
 - Optimized for many inputs + few outputs (like a neuron)
 - Computes all partial derivatives in # of outputs + 1 graph traversals
 - Still fundamentally a calculus trick it's complicated but it works
 - This is what Tensorflow uses

softmax

- Used for classification
 - Given a score for each class
 - It produces a probability of each class
 - The class with the highest probability is the "answer" you get

$$h_{\theta}(x) = \frac{1}{1 + \exp(-\theta^T x)},$$

x is a vector of input values theta is a vector of weights



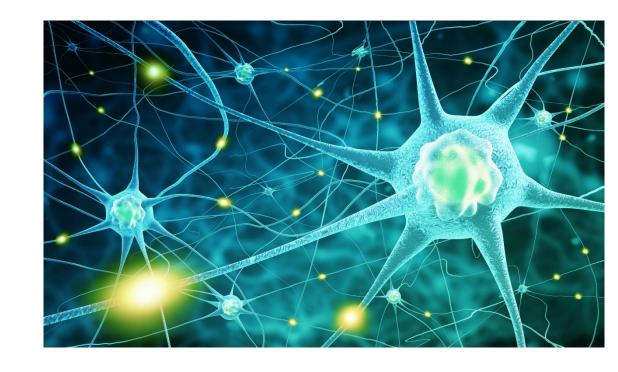
in review

- Gradient descent is an algorithm for minimizing error over multiple steps
- Autodiff is a calculus trick for finding the gradients in gradient descent
- Softmax is a function for choosing the most probable classification given several input values

introducing artificial neural networks

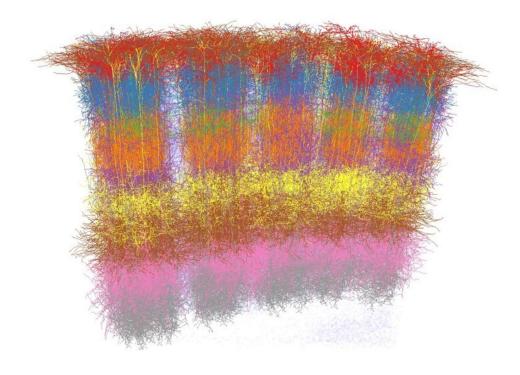
the biological inspiration

- Neurons in your cerebral cortex are connected via axons
- A neuron "fires" to the neurons it's connected to, when enough of its input signals are activated.
- Very simple at the individual neuron level – but layers of neurons connected in this way can yield learning behavior.
- Billions of neurons, each with thousands of connections, yields a mind



cortical columns

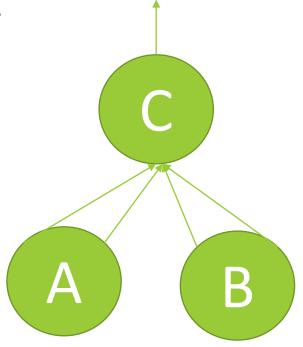
- Neurons in your cortex seem to be arranged into many stacks, or "columns" that process information in parallel
- "mini-columns" of around 100 neurons are organized into larger "hypercolumns". There are 100 million minicolumns in your cortex
- This is coincidentally similar to how GPU's work...



(credit: Marcel Oberlaender et al.)

the first artificial neurons

• 1943!!



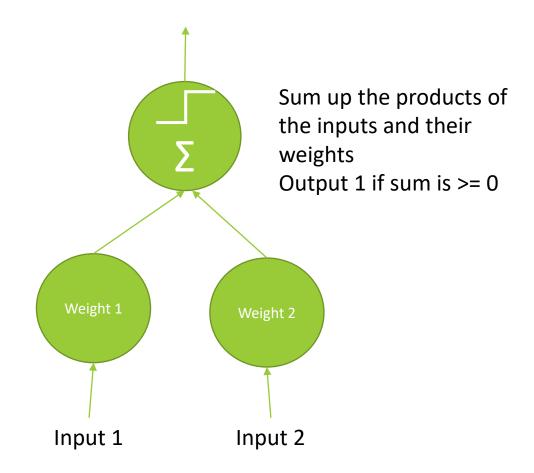
An artificial neuron "fires" if more than N input connections are active.

Depending on the number of connections from each input neuron, and whether a connection activates or suppresses a neuron, you can construct AND, OR, and NOT logical constructs this way.

This example would implement C = A OR B if the threshold is 2 inputs being active.

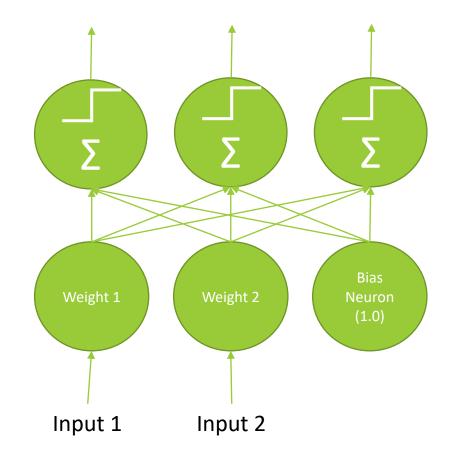
the linear threshold unit (ltu)

- 1957!
- Adds weights to the inputs; output is given by a step function



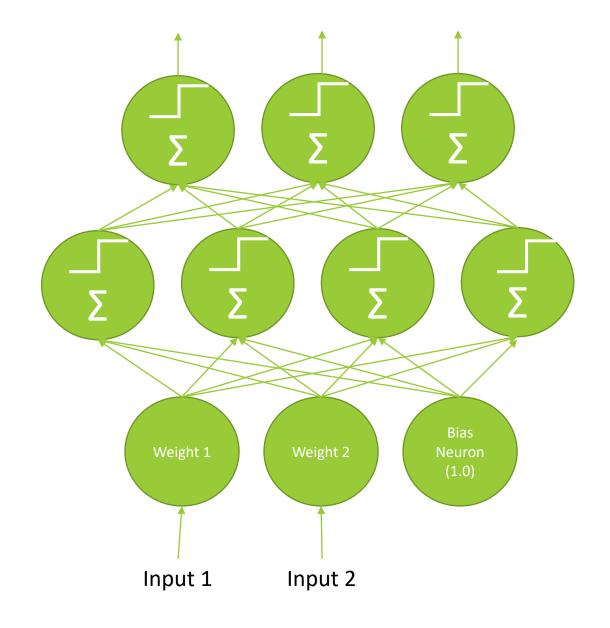
the perceptron

- A layer of LTU's
- A perceptron can learn by reinforcing weights that lead to correct behavior during training
- This too has a biological basis ("cells that fire together, wire together")



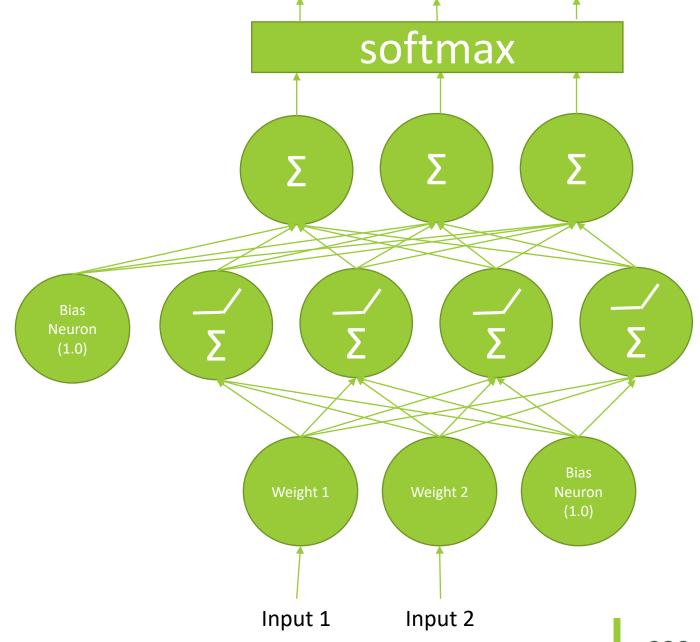
multi-layer perceptrons

- Addition of "hidden layers"
- This is a Deep Neural Network
- Training them is trickier –
 but we'll talk about that.



a modern deep neural network

- Replace step activation function with something better
- Apply softmax to the output
- Training using gradient descent

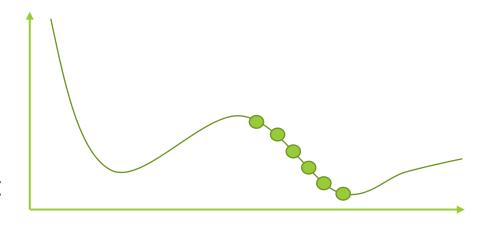


let's play

deep learning

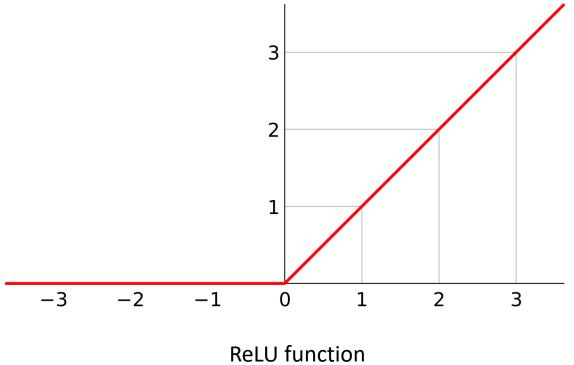
backpropagation

- How do you train a MLP's weights? How does it learn?
- Backpropagation... or more specifically: Gradient Descent using reverse-mode autodiff!
- For each training step:
 - Compute the output error
 - Compute how much each neuron in the previous hidden layer contributed
 - Back-propagate that error in a reverse pass
 - Tweak weights to reduce the error using gradient descent

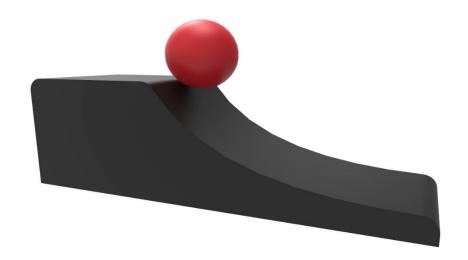


activation functions (aka rectifier)

- Step functions don't work with gradient descent – there is no gradient!
 - Mathematically, they have no useful derivative.
- Alternatives:
 - Logistic function
 - Hyperbolic tangent function
 - Exponential linear unit (ELU)
 - ReLU function (Rectified Linear Unit)
- ReLU is common. Fast to compute and works well.
 - Also: "Leaky ReLU", "Noisy ReLU"
 - ELU can sometimes lead to faster learning though.



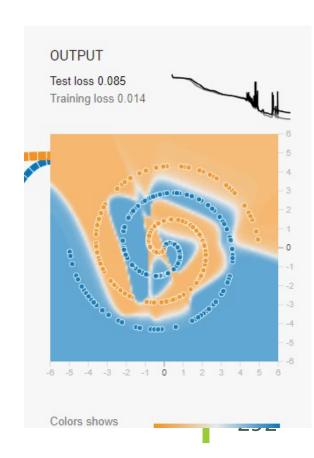
optimization functions



- There are faster (as in faster learning) optimizers than gradient descent
 - Momentum Optimization
 - Introduces a momentum term to the descent, so it slows down as things start to flatten and speeds up as the slope is steep
 - Nesterov Accelerated Gradient
 - A small tweak on momentum optimization computes momentum based on the gradient slightly ahead of you, not where you are
 - RMSProp
 - Adaptive learning rate to help point toward the minimum
 - Adam
 - Adaptive moment estimation momentum + RMSProp combined
 - Popular choice today, easy to use

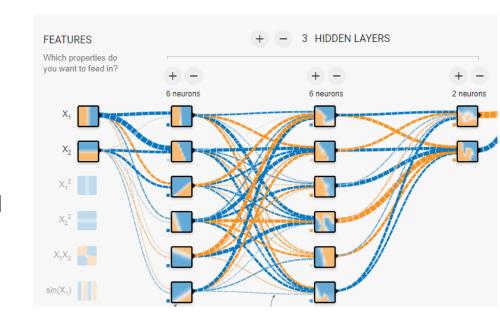
avoiding overfitting

- With thousands of weights to tune, overfitting is a problem
- Early stopping (when performance starts dropping)
- Regularization terms added to cost function during training
- Dropout ignore say 50% of all neurons randomly at each training step
 - Works surprisingly well!
 - Forces your model to spread out its learning



tuning your topology

- Trial & error is one way
 - Evaluate a smaller network with less neurons in the hidden layers
 - Evaluate a larger network with more layers
 - Try reducing the size of each layer as you progress form a funnel
- More layers can yield faster learning
- Or just use more layers and neurons than you need, and don't care because you use early stopping.
- Use "model zoos"



tensorflow

why tensorflow?

- It's not specifically for neural networks—it's more generally an architecture for executing a graph of numerical operations
- Tensorflow can optimize the processing of that graph, and distribute its processing across a network
 - Sounds a lot like Apache Spark, eh?
- It can also distribute work across GPU's!
 - Can handle massive scale it was made by Google
- Runs on about anything
- Highly efficient C++ code with easy to use Python API's

tensorflow basics

- Install with conda install tensorflow or conda install tensorflow-gpu
- A tensor is just a fancy name for an array or matrix of values
- To use Tensorflow, you:
 - Construct a graph to compute your tensors
 - Initialize your variables
 - Execute that graph nothing actually happens until then

World's simplest Tensorflow app:

```
import tensorflow as tf

a = tf.Variable(1, name="a")
b = tf.Variable(2, name="b")
f = a + b

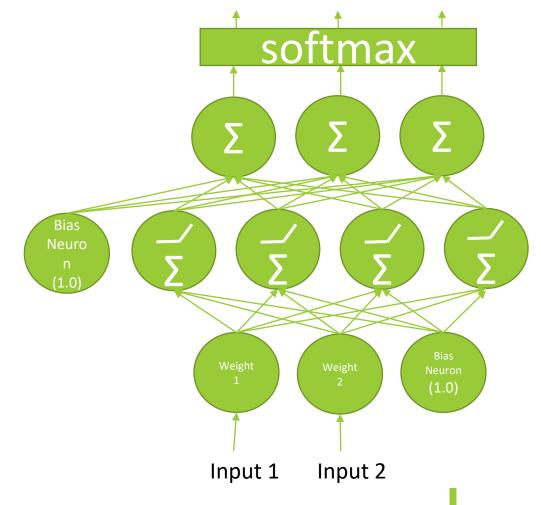
tf.print(f)
```


creating a neural network with tensorflow

- Mathematical insights:
 - All those interconnected arrows multiplying weights can be thought of as a big matrix multiplication
 - The bias term can just be added onto the result of that matrix multiplication
- So in Tensorflow, we can define a layer of a neural network as:

```
output =
tf.matmul(previous_layer,
layer_weights) + layer_biases
```

• By using Tensorflow directly we're kinda doing this the "hard way."



creating a neural network with tensorflow

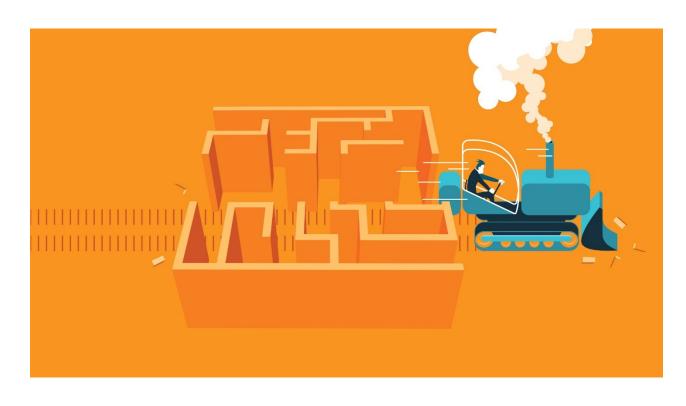
- Load up our training and testing data
- Construct a graph describing our neural network
- Associate an optimizer (ie gradient descent) to the network
- Run the optimizer with your training data
- Evaluate your trained network with your testing data



make sure your features are normalized

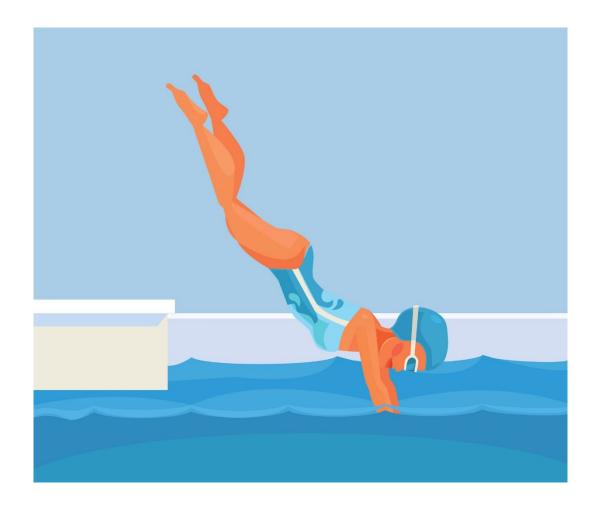
- Neural networks usually work best if your input data is normalized.
 - That is, 0 mean and unit variance
 - The real goal is that every input feature is comparable in terms of magnitude
- scikit_learn's StandardScaler can do this for you
- Many data sets are normalized to begin with such as the one we're about to use.

why keras?



- Easy and fast prototyping
 - Runs on top of TensorFlow (or CNTK, or Theano)
 - scikit_learn integration
 - Less to think about which often yields better results without even trying
 - This is really important! The faster you can experiment, the better your results.

let's dive in



Example: multi-class classification

• MNIST is an example of multi-class classification.

example: binary classification

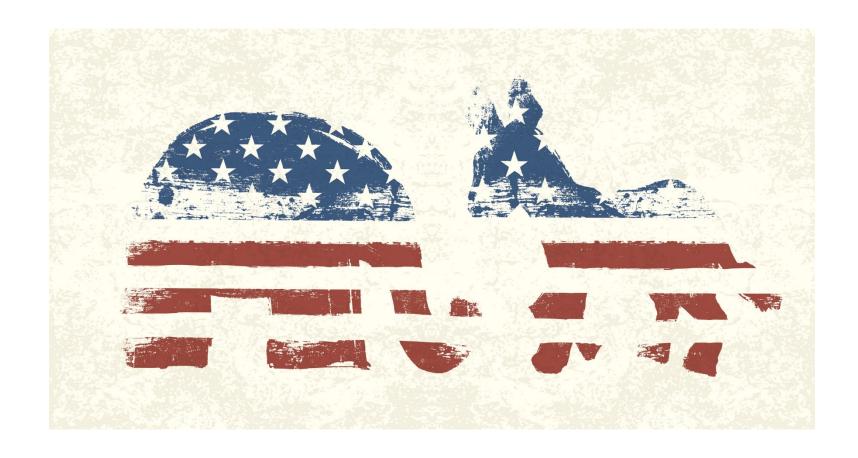
```
model = Sequential()
model.add(Dense(64, input_dim=20,
activation='relu')) model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop', metrics=['accuracy'])
```


integrating keras with scikit-learn

from scikeras.wrappersimport KerasClassifier

```
def create_model():
  model = Sequential()
  model.add(Dense(6, input_dim=4, kernel_initializer='normal', activation='relu'))
  model.add(Dense(4, kernel_initializer='normal', activation='relu'))
  model.add(Dense(1, kernel_initializer='normal', activation='sigmoid'))
  model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
  return model
estimator = KerasClassifier(model=create model, nb epoch=100, verbose=0)
cv_scores = cross_val_score(estimator, features, labels, cv=10)
print(cv_scores.mean())
```


let's try it out

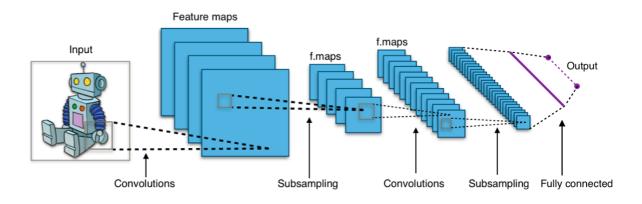


convolutional neural networks

cnn's: what are they for?

- When you have data that doesn't neatly align into columns
 - Images that you want to find features within
 - Machine translation
 - Sentence classification
 - Sentiment analysis
- They can find features that aren't in a specific spot
 - Like a stop sign in a picture
 - Or words within a sentence
- They are "feature-location invariant"

cnn's: how do they work?



- Inspired by the biology of the visual cortex
 - Local receptive fields are groups of neurons that only respond to a part of what your eyes see (subsampling)
 - They overlap each other to cover the entire visual field (convolutions)
 - They feed into higher layers that identify increasingly complex images
 - Some receptive fields identify horizontal lines, lines at different angles, etc. (filters)
 - These would feed into a layer that identifies shapes
 - Which might feed into a layer that identifies objects
 - For color images, extra layers for red, green, and blue

how do we "know" that's a stop sign?

- Individual local receptive fields scan the image looking for edges, and pick up the edges of the stop sign in a layer
- Those edges in turn get picked up by a higher level convolution that identifies the stop sign's shape (and letters, too)
- This shape then gets matched against your pattern of what a stop sign looks like, also using the strong red signal coming from your red layers
- That information keeps getting processed upward until your foot hits the brake!
- A CNN works the same way

cnn's with keras

- Source data must be of appropriate dimensions
 - ie width x length x color channels
- Conv2D layer type does the actual convolution on a 2D image
 - Conv1D and Conv3D also available doesn't have to be image data
- MaxPooling2D layers can be used to reduce a 2D layer down by taking the maximum value in a given block
- Flatten layers will convert the 2D layer to a 1D layer for passing into a flat hidden layer of neurons
- Typical usage:
 - Conv2D -> MaxPooling2D -> Dropout -> Flatten -> Dense -> Dropout -> Softmax

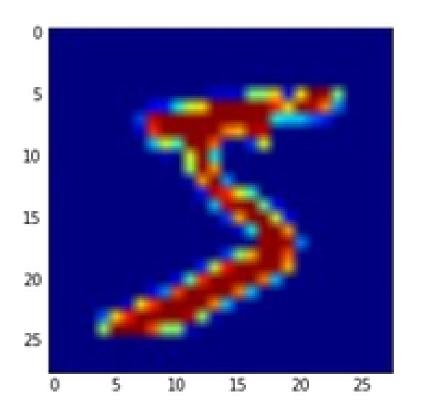
cnn's are hard

- Very resource-intensive (CPU, GPU, and RAM)
- Lots of hyperparameters
 - Kernel sizes, many layers with different numbers of units, amount of pooling... in addition to the usual stuff like number of layers, choice of optimizer
- Getting the training data is often the hardest part! (As well as storing and accessing it)

specialized cnn architectures

- Defines specific arrangement of layers, padding, and hyperparameters
- LeNet-5
 - Good for handwriting recognition
- AlexNet
 - Image classification, deeper than LeNet
- GoogLeNet
 - Even deeper, but with better performance
 - Introduces inception modules (groups of convolution layers)
- ResNet (Residual Network)
 - Even deeper maintains performance via skip connections.

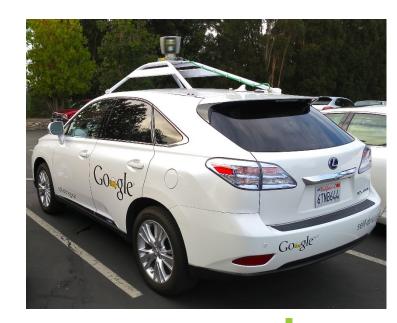
let's try it out



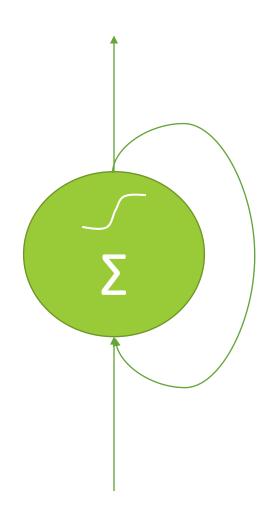
recurrent neural networks

rnn's: what are they for?

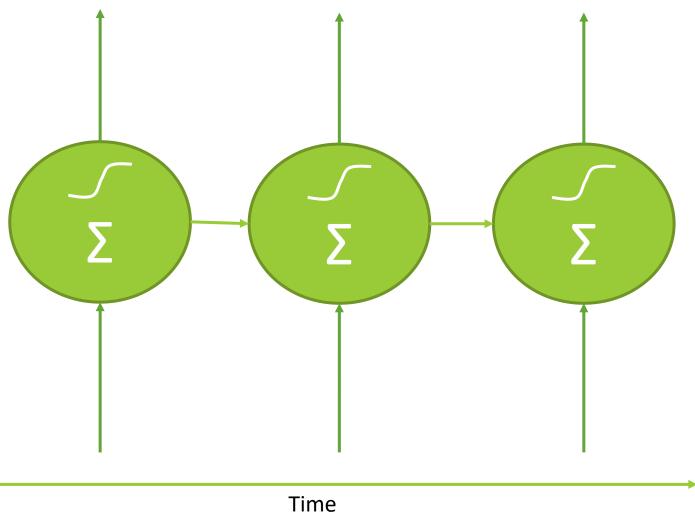
- Time-series data
 - When you want to predict future behavior based on past behavior
 - Web logs, sensor logs, stock trades
 - Where to drive your self-driving car based on past trajectories
- Data that consists of sequences of arbitrary length
 - Machine translation
 - Image captions
 - Machine-generated music



a recurrent neuron

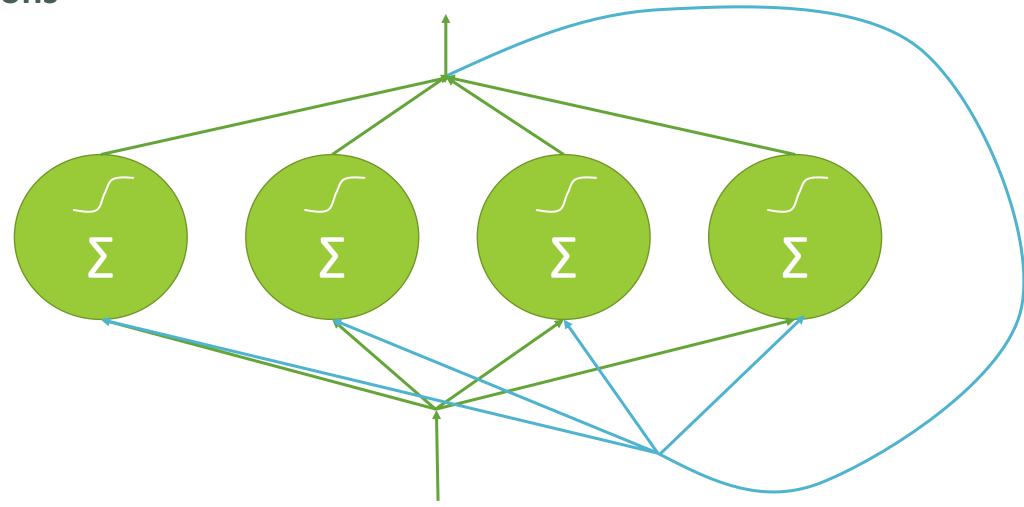


another way to look at it



A "Memory Cell"

a layer of recurrent neurons



rnn topologies

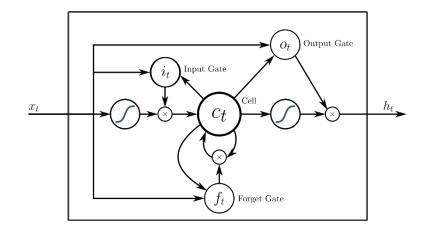
- Sequence to sequence
 - i.e., predict stock prices based on series of historical data
- Sequence to vector
 - i.e., words in a sentence to sentiment
- Vector to sequence
 - i.e., create captions from an image
- Encoder -> Decoder
 - Sequence -> vector -> sequence
 - i.e., machine translation

training rnn's

- Backpropagation through time
 - Just like backpropagation on MLP's, but applied to each time step.
- All those time steps add up fast
 - Ends up looking like a really, really deep neural network.
 - Can limit backpropagation to a limited number of time steps (truncated backpropagation through time)

training rnn's

- State from earlier time steps get diluted over time
 - This can be a problem, for example when learning sentence structures
- LSTM Cell
 - Long Short-Term Memory Cell
 - Maintains separate short-term and long-term states
- GRU Cell
 - Gated Recurrent Unit
 - Simplified LSTM Cell that performs about as well



training rnn's

- It's really hard
 - Very sensitive to topologies, choice of hyperparameters
 - Very resource intensive
 - A wrong choice can lead to a RNN that doesn't converge at all.

let's run an example

Transfer Learning

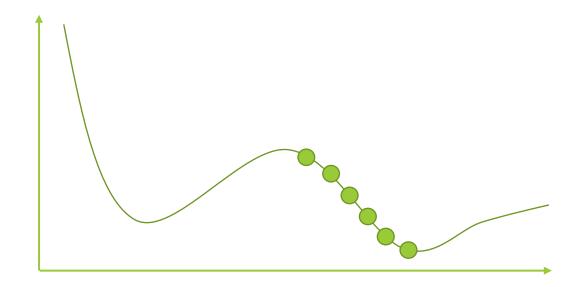
Re-using trained models

- For many common problems, you can import pre-trained models and just use them.
 - Image classification (ResNet, Inception, MobileNet, Oxford VGG)
 - NLP (word2vec, GloVe)
- Use them as-is, or tune them for your application
- Model Zoos
 - Caffe Model Zoo

Tuning Neural Networks

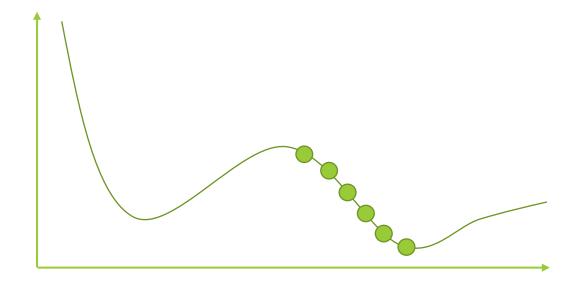
Learning Rate

- Neural networks are trained by gradient descent (or similar means)
- We start at some random point, and sample different solutions (weights) seeking to minimize some cost function, over many epochs
- How far apart these samples are is the *learning rate*



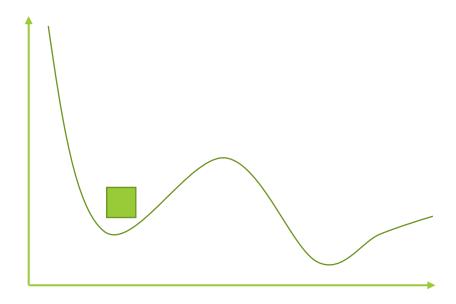
Effect of learning rate

- Too high a learning rate means you might overshoot the optimal solution!
- Too small a learning rate will take too long to find the optimal solution
- Learning rate is an example of a hyperparameter



Batch Size

- How many training samples are used within each epoch
- Somewhat counter-intuitively:
 - Smaller batch sizes can work their way out of "local minima" more easily
 - Batch sizes that are too large can end up getting stuck in the wrong solution
 - Random shuffling at each epoch can make this look like very inconsistent results from run to run



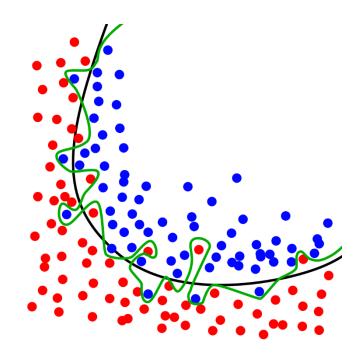
To Recap

- Small batch sizes tend to not get stuck in local minima
- Large batch sizes can converge on the wrong solution at random
- Large learning rates can overshoot the correct solution
- Small learning rates increase training time

Neural Network Regularization Techniques

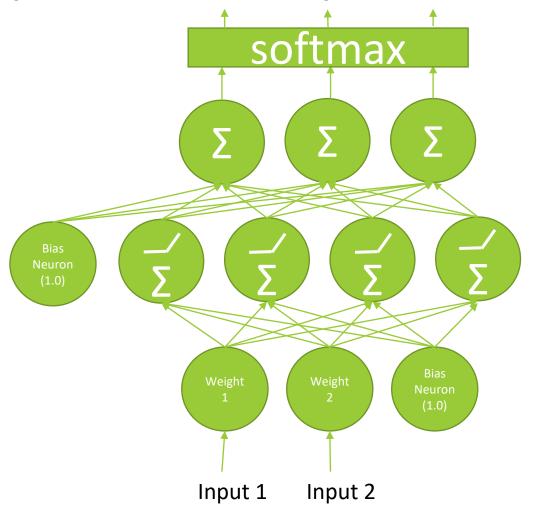
What is regularization?

- Preventing overfitting
 - Models that are good at making predictions on the data they were trained on, but not on new data it hasn't seen before
 - Overfitted models have learned patterns in the training data that don't generalize to the real world
 - Often seen as high accuracy on training data set, but lower accuracy on test or evaluation data set.
 - When training and evaluating a model, we use training, evaluation, and testing data sets.
- Regularization techniques are intended to prevent overfitting.

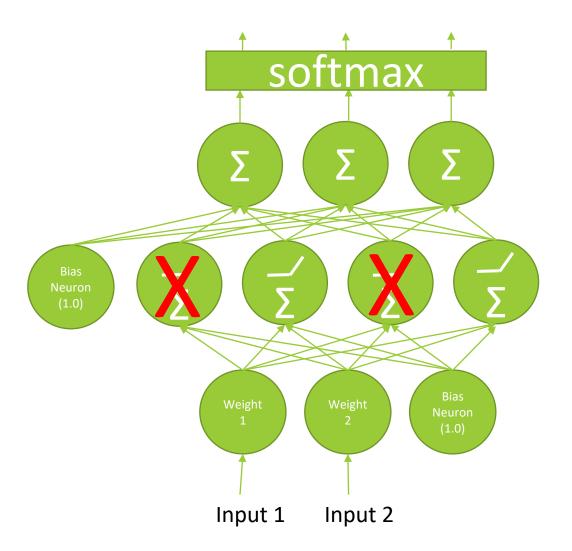


Chabacano [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]

Too many layers? Too many neurons?



Dropout



Early Stopping

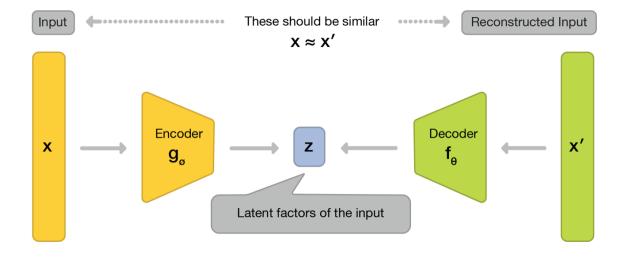
```
Epoch 1/10
- 4s - loss: 0.2406 - acc: 0.9302 - val loss: 0.1437 - val acc: 0.9557
Epoch 2/10
- 2s - loss: 0.0971 - acc: 0.9712 - val_loss: 0.0900 - val_acc: 0.9725
Epoch 3/10
- 2s - loss: 0.0653 - acc: 0.9803 - val_loss: 0.0725 - val_acc: 0.9786
Epoch 4/10
- 2s - loss: 0.0471 - acc: 0.9860 - val loss: 0.0689 - val acc: 0.9795
Epoch 5/10
- 2s - loss: 0.0367 - acc: 0.9890 - val_loss: 0.0675 - val_acc: 0.9808
Epoch 6/10
- 2s - loss: 0.0266 - acc: 0.9919 - val_loss: 0.0680 - val_acc: 0.9796
Epoch 7/10
- 2s - loss: 0.0208 - acc: 0.9937 - val_loss: 0.0678 - val_acc: 0.9811
Epoch 8/10
- 2s - loss: 0.0157 - acc: 0.9953 - val loss: 0.0719 - val acc: 0.9810
Epoch 9/10
 - 2s - loss: 0.0130 - acc: 0.9960 - val loss: 0.0707 - val acc: 0.9825
Epoch 10/10
 - 2s - loss: 0.0097 - acc: 0.9972 - val loss: 0.0807 - val acc: 0.9805
```

Generative Modeling

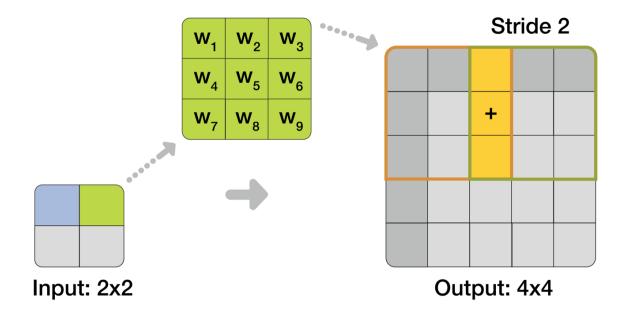
Variational Auto-Encoders

Auto-Encoders

- An encoder learns how to reduce input down to its latent features (using convolution, like a CNN)
- A decoder learns how to reconstruct data from those latent features (using transpose convolution!)
- The system as a whole is trained such that the original input fed into the encoder is as close as possible to the reconstructed data generated by the decoder
- Once trained, we can discard the encoder and just use the decoder to create synthetic data!
- Applications: dimensionality reduction, compression, search, denoising, colorization



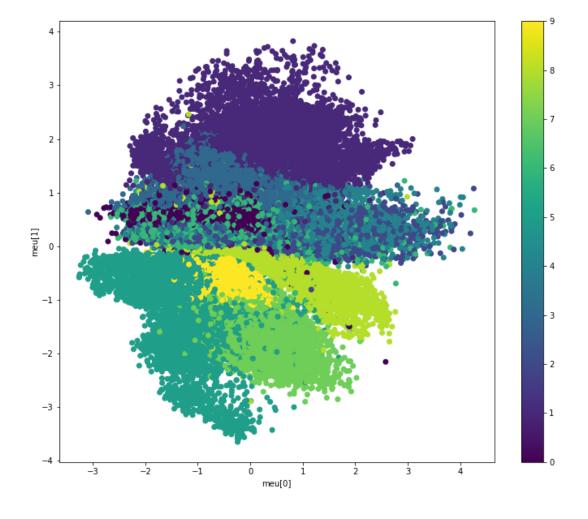
Transpose convolution



- The decoder uses Conv2DTranspose layers to reconstruct images from their latent features
- It learns weights used to create new image pixels from lower-dimensional representations
 - Well, it can be used on more than just images
- Stride of 2 is often used
- Can use max-unpooling (inverse of maxpooling)
- Think of the decoder as a CNN that works backwards.

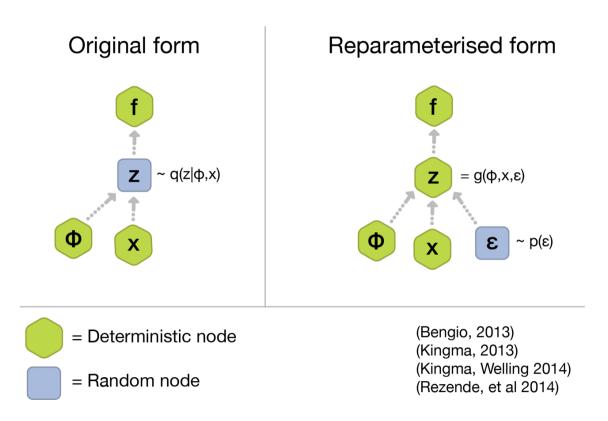
Variational Auto-Encoders

- In a VAE, the latent vectors are *probability* distributions (like this)
- Represented by mean and variance of Gaussian normal distributions
- $X \rightarrow p(z/X) \rightarrow z \rightarrow p(X/z)$
- This is the inspiration of generative adversarial networks (GAN's) – we're getting there

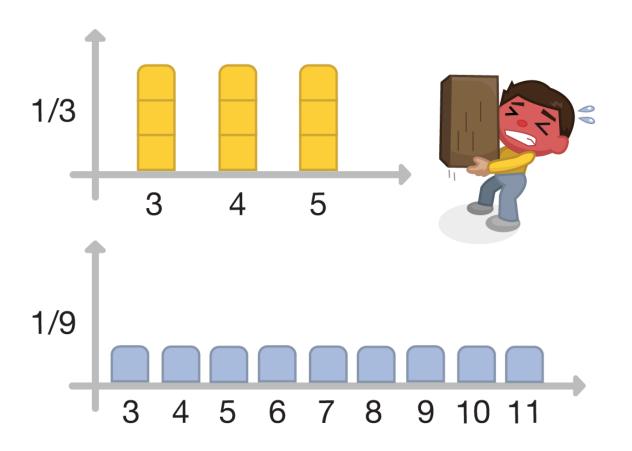


The "reparameterization trick"

- A problem with the VAE idea is the probability distribution (z) can't be differentiated
- And we need derivatives for backpropagation to work...
- The "trick" is to convert the random sampling from z to a deterministic form:
- Z = mu + sigma * epsilon
- Here, epsilon is the random variable (from a standard normal distribution)
- That pushes the random step out of the network as an input, giving us a connected graph.



Kullback-Leibler Divergence



- How do we measure the distance between two probability distributions of the original and reconstructed data?
- KL Divergence is used
 - Sometimes called "earth-mover distance"
- KL Divergence = $\sum p(x) * log(p(x)/q(x))$
- Equivalent to Cross Entropy (p, q) Entropy (p)
 - Sometimes called "relative entropy"
- We use it as a loss function
 - htl_loss = -0.5 * (1 + z_log_var tf.square(z_mean) tf.exp(z_log_var))

Generative Adversarial Networks (GAN's)

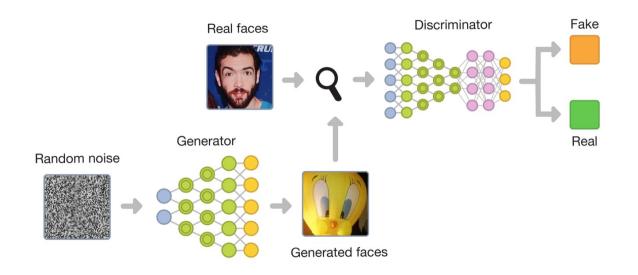
Generative Adversarial Networks

- Yes, it's the tech behind "deepfakes" and all those viral face-swapping and aging apps
- But researchers had nobler intentions...
 - Generating synthetic datasets to remove private info
 - Anomaly detection
 - Self-driving
 - Art, music

This person doesn't exist.

GAN's

- Learns the actual distribution of latent vectors
 - Doesn't assume Gaussian normal distributions like VAE's
- The generator maps random noise(!) to a probability distribution
- The discriminator learns to identify real images from generated (fake) images
- The generator is trying to fool the discriminator into thinking its images are real
- The discriminator is trying to catch the generator
- The generator and discriminator are adversarial, hence the name...
- Once the discriminator can't tell the difference anymore, we're done (in theory)



Fancy math

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

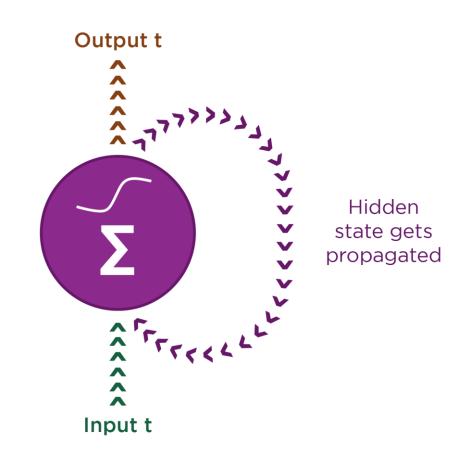
- That's the adversarial loss function.
- We call it a "min-max game"
 - The generator is minimizing its loss in creating realistic images
 - The discriminator, at the same time, is maximizing its ability to detect fakes
- It is complicated and delicate.
 - Training is very unstable; lots of trial & error / hyperparameter tuning
 - Mode collapse
 - Vanishing gradients

The Transformer Architecture (GPT, ChatGPT)

And how self-attention works its magic

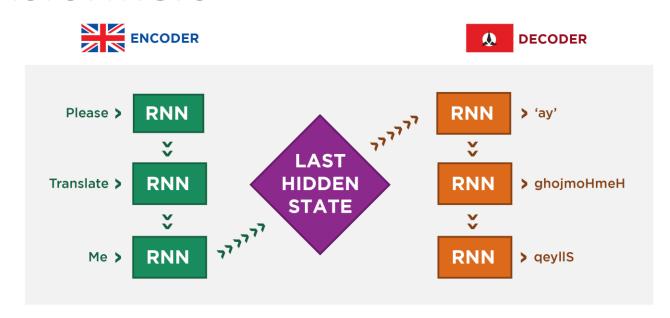
The Evolution of Transformers

- RNN's, LSTMs
- Introduced a feedback loop for propagating information forward
- Useful for modeling sequential things
 - Time series
 - Language! A sequence of words (or tokens)



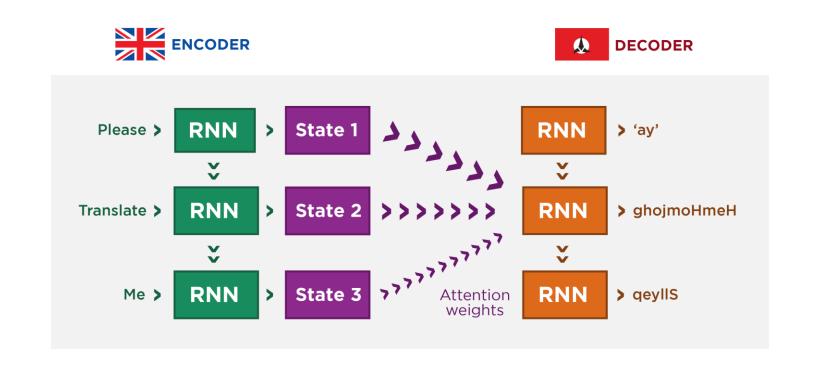
The Evolution of Transformers

- Machine translation
- Encoder / Decoder architecture
- Encoders and Decoders are RNN's
- But, the one vector tying them together creates an information bottleneck
 - Information from the start of the sequence may be lost



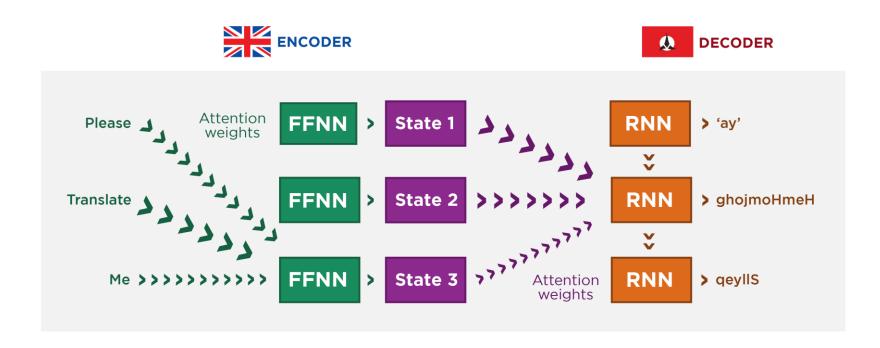
"Attention is all you need"

- A hidden state for each step (token)
- Deals better with differences in word order
- Starts to have a concept of relationships between words
- But RNN's are still sequential in nature, can't parallelize it

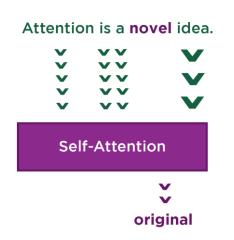


Transformers

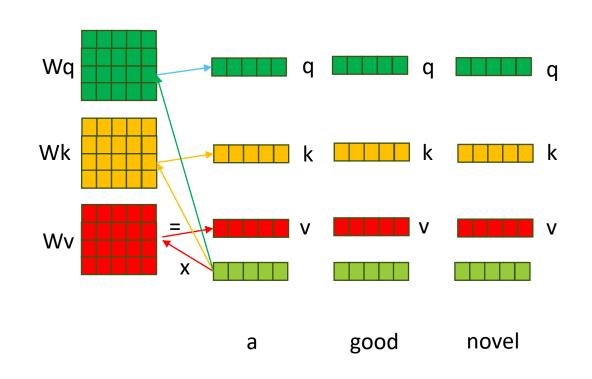
- Ditch RNN's for feed-forward neural networks (FFNN's)
- Use "self-attention"
- This makes it parallelizable (so can train on much more data)



- Each encoder or decoder has a list of embeddings (vectors) for each token
- Self-attention produces a weighted average of all token embeddings. The magic is in computing the attention weights.
- This results in tokens being tied to other tokens that are important for its context, and a new embedding that captures its "meaning" in context.

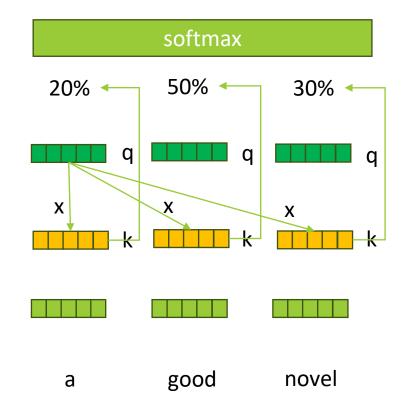


- Three matrices of weights are learned through backpropagation
 - Query (Wq)
 - Key (Wk)
 - Value (Wv)
- Every token gets a query (q), key (k), and value (v) vector by multiplying its embedding against these matrices



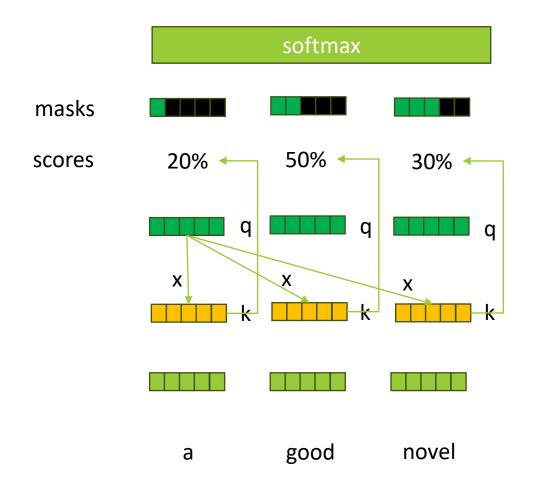
- Compute a score for each token by multiplying (dot product) its query with each key
- "Scaled dot-product attention"
- Dot product is just one similarity function we can use.
- In practice, softmax is then applied to the scores to normalize them.

scores

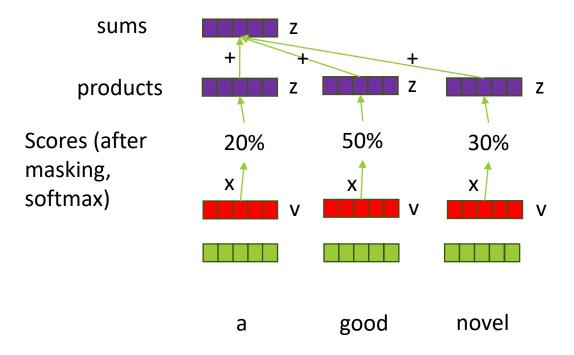


Masked Self-Attention

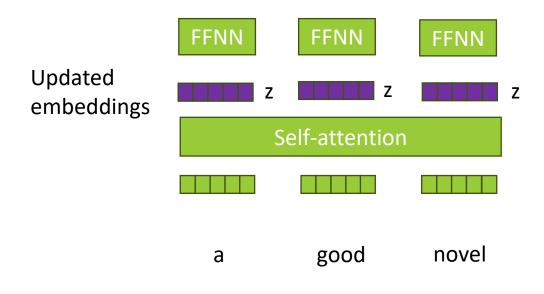
- A mask can be applied to prevent tokens from "peeking" into future tokens (words)
- GPT does this, but BERT does something else (masked language modeling)
- In this example, "good" wouldn't be affected by "novel", but "novel" could by affected by "good".
- This is just the concept... actual implementation details will vary.



- Now we sum.
- Multiply values by scores, and sum them up.

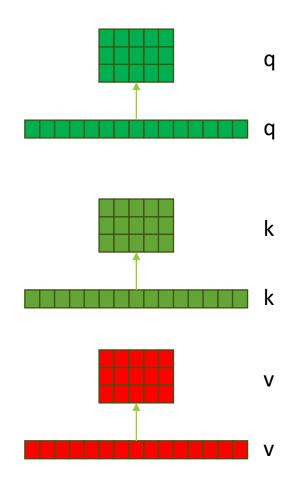


- Repeat entire process for each token (in parallel)
- Now we have our updated embeddings for each token!
- These weight each token embedding as it's passed into the feed-forward neural network.



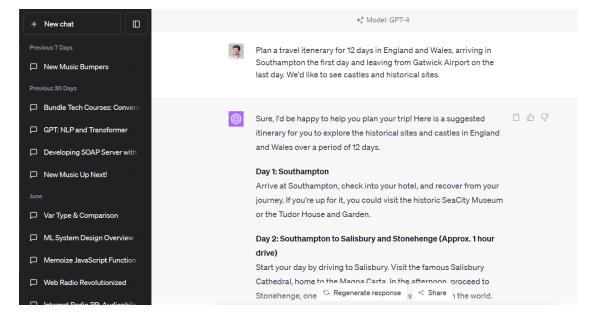
Multi-Headed Self-Attention

- The q, k, and v vectors are reshaped into matrices
- Then each row of the matrix can be processed in parallel
- The number of rows are the number of "heads"



Applications of Transformers

- Chat!
- Question answering
- Text classification
 - i.e., sentiment analysis
- Named entity recognition
- Summarization
- Translation
- Code generation
- Text generation
 - i.e., automated customer service

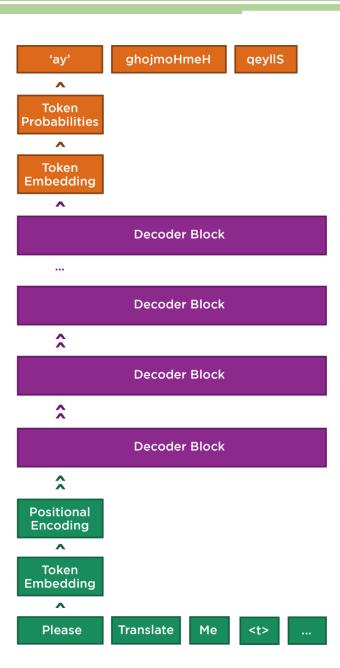


From Transformers to GPT

Generative Pre-Trained Transformers

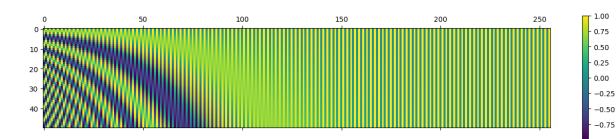
GPT

- Generative Pre-Trained Transformer (GPT-2 in this example)
- Decoder-only stacks of decoder blocks
 - Each consisting of a masked self-attention layer, and a feed-forward neural network
 - As an aside, BERT consists only of encoders. T5 is an example of a model that uses both encoders and decoders.
- No concept of input, all it does is generate the next token over and over
 - Using attention to maintain relationships to previous words / tokens
 - You "prompt" it with the tokens of your question or whatever
 - It then keeps on generating given the previous tokens
- Getting rid of the idea of inputs and outputs is what allows us to train it on unlabeled piles of text
 - It's "learning a language" rather than optimizing for some specific task
- Hundreds of billions of parameters



GPT: Input processing

- Tokenization, token encoding
- Token embedding
 - Captures semantic relationships between tokens, token similarities
- Positional encoding
 - Captures the position of the token in the input relative to other nearby tokens
 - Uses an interleaved sinusoidal function so it works on any length



GPT-3 Codex

Many words map to one token, but some don't: indivisible.

Unicode characters like emojis may be split into many tokens containing the underlying bytes: \blacksquare

Sequences of characters commonly found next to each other may be grouped together: 1234567890

Clear Show example

Tokens Characters

64 252

Many words map to one token, but some don't: indivisible.

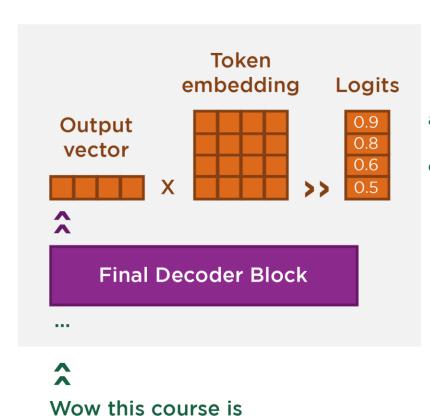
Unicode characters like emojis may be split into many tokens containing the underlying bytes: ♦♦♦♦♦♦

Sequences of characters commonly found next to each other may be grouped together: 1234567890

TEXT TOKENIDS

GPT: Output processing

- The stack of decoders outputs a vector at the end
- Multiply this with the token embeddings
- This gives you probabilities (logits) of each token being the right next token (word) in the sequence
- You can randomize things a bit here ("temperature") instead of always picking the highest probability



amazing incredible challenging hard

Transfer Learning with Transformers

- Add additional training data through the whole thing
- Freeze specific layers, re-train others
 - Train a new tokenizer to learn a new language
- Add a layer on top of the pre-trained model
 - Just a few may be all that's needed!
 - Provide examples of prompts and desired completions
 - "How's the weather?" -> "What's it to you, bucko?"
 - Adapt it to classification or other tasks
 - "Wow, I love this course!" -> "Positive"

Desired result

Fine-tuning neural network

GPT-x

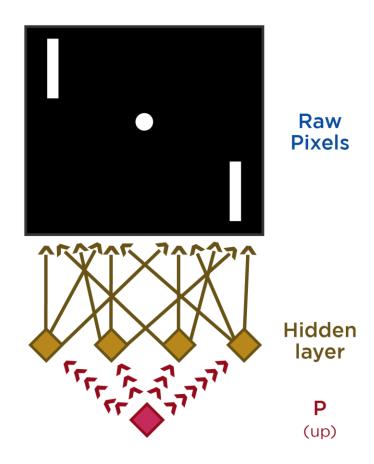
(or your favorite pre-trained model)

From GPT to ChatGPT and GPT-4

How video games, robotics, and humans came together to create an Al

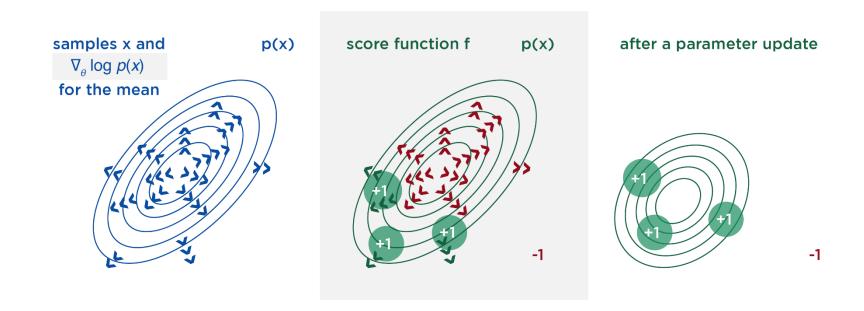
From GPT to ChatGPT: Deep Reinforcement Learning

- Reinforcement learning with a neural network
- Developed by training on old Atari video games! Only inputs are the pixels of the game.
 - Well, difference frames technically, so we can capture motion.
- A Policy Network learns how to control the game
 - For example, should I move up or down in Pong given a state?
 - The "reward" is if the ball eventually gets past the opponent or not
 - Given the number of pixels and the number of frames before a round is won, this is crazy-hard.

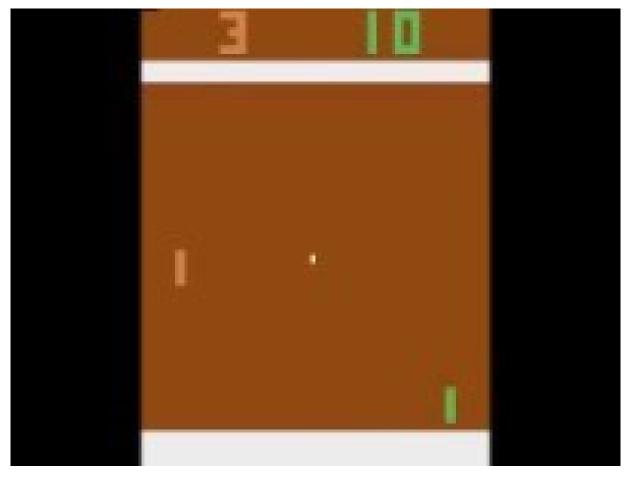


Policy Gradients

- Can't train this like a typical neural network, since we don't have a label to back-propagate right away
 - A given motion may not result in a win until some time in the future
- Instead, each action has a gradient associated with it (just like supervised learning)
- After we win or lose, we go back and update those gradients as positive (+1) for an eventual win and negative (-1) for an eventual loss.



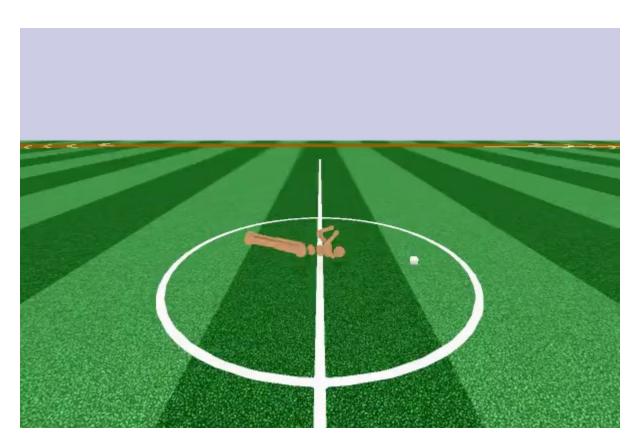
Pong Al with Policy Gradients



Andrej Karpathy https://www.youtube.com/watch?v=YOW8m2YGtRg

Proximal Policy Optimization (PPO)

- Policy Gradients have issues
 - Very sensitive to step size
 - Poor efficiency
- Enter PPO
 - Introduces Kullback-Leibler divergence into the algorithm
 - This is just a distance between two probability distributions
 - New variants simplify out the KL penalty
 - Compatible with SGD
 - Easier to tune



What do video games and robots have to do with ChatGPT?

- ChatGPT builds on top of GPTn with Reinforcement Learning from Human Feedback (RLHF)
- GPT is fine-tuned using Proximal Policy Optimization (PPO) and Deep RL

From GPT to ChatGPT: Step 1

- Initial model is trained by humans providing conversations where they play both sides
 - The model did suggest responses to them
 - Earlier training data from InstructGPT also used
- This is supervised fine-tuning
- The result is a trained, supervised *policy*
 - ...which will later be optimized with PPO
- ChatGPT's secret is that it's built by supervised training from a large army of humans

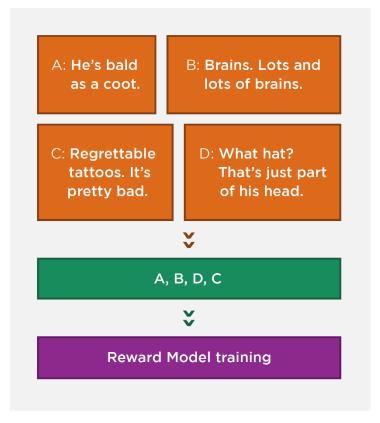
Select a prompt sampled from a dataset of prompts

A human labeler writes a desired response to the prompt

Fine-tune GPT-n with this prompt and response

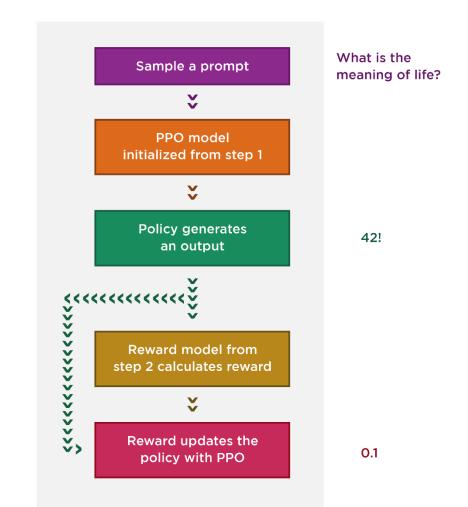
From GPT to ChatGPT: Step 2

- Create a reward model for reinforcement learning.
 - It's not as simple as "did I win this game of pong"... how do we know which responses are best?
- A prompt, and several model outputs, are selected
- A human labeler ranks the outputs from best to worst.
- This data trains a reward model.
- In GPT-4, the reward model is also used to punish "harmful outputs."



From GPT to ChatGPT: Step 3

- The supervised policy from step 1 is optimized using our reward model from step 2
- Proximal Policy Optimization (PPO) is used.
- Several iterations are performed



ChatGPT Moderation

- Another layer that prevents content that is
 - Sexual
 - Hateful
 - Violent
 - Promotes self-harm
 - Harassment
- Although it's complicated, it fundamentally relies on human labelers
 - ...and that's not a good job.
 - https://arxiv.org/abs/2208.03274

A Holistic Approach to Undesired Content Detection in the Real World

Warning: some content may contain racism, sexuality, or other harmful language.

Todor Markov* Chong Zhang* Sandhini Agarwal Tyna Eloundou Teddy Lee Steven Adler Angela Jiang Lilian Weng*

OpenAI

Abstract

We present a holistic approach to building a robust and useful natural language classification system for real-world content moderation. The success of such a system relies on a chain of carefully designed and executed steps, including the design of content taxonomies and labeling instructions, data quality control, an active learning pipeline to capture rare events, and a variety of methods to make the model robust and to avoid overfitting. Our moderation system is trained to detect a broad set of categories of undesired content, including sexual content, hateful content, violence, self-harm, and harassment. This approach generalizes to a wide range of different content taxonomies and can be used to create high-quality content classifiers that outperform off-the-shelf models.

1 Introduction

Recent advances in deep learning have accelerated the adoption of language models for socioeconomically valuable tasks in the real world (Devlin et al. 2019; Brown et al. 2020; Cohen et al. 2022). Both the systems' builders and its users may benefit from a responsible deployment approach that includes moderating the models' outputs: First, model providers may want assurances that the models will not produce content that is disallowed by their policies. Second, customers of these models sometimes require control over

.08.03274v2

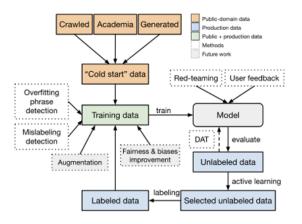


Figure 1: Overview of the model training framework.

toxic comment moderation. There is increasing attention to understanding the risk areas of large language models via a more rigorous taxonomy (Weidinger et al. 2021), but the amount of work is still limited, especially when it comes

...and that's how you build an AI.

+ Model: GPT-4

What is Frank Kane hiding underneath that hat?

As an Al language model, I don't have real-time access to any person's personal information or current behavior unless it's been shared with me in the course of our conversation. I am designed to respect user privacy and confidentiality. As of my training data up until September 2021, Frank Kane is a well-respected instructor in the field of data science and machine learning, but there isn't any specific information about him habitually wearing a hat or hiding something underneath it.

For questions like these, it's always best to directly ask the person involved or respect their privacy if they choose not to share.

...the moderation layer kicked in here, how disappointing.

The OpenAl API

Chat Completions

- Just an API into ChatGPT
- A chat is a series of messages
 - Each message has a role (system, user, or assistant) and content.
- Other parameters:
 - Model (gpt-3.5-turbo, gpt-4, etc.)
 - Temperature or top_p (how random the responses are)
 - N (number of choices to generate)
 - Stream (whether to stream out the output one word at a time)
 - Stop (Stop sequences)
 - Max tokens
 - Presence_penalty (penalize or encourage tokens that already appeared)
 - Logit_bias (map to directly affect the probability of certain tokens)

Tools and Functions

- Chat completions also have a *tools* parameter that contains *functions*
- You provide a description of what this function does, and what its parameters are.
- ChatGPT can then embed function calls as part of its response!
- This allows you to integrate your own services into the response.
- One way to implement "retrieval augmented generation" (RAG)
- Example: if the user asks for the weather, call your weather API to get the current weather conditions.



Image generation

- Create image
- Create image edit
 - Provide a mask of a transparent area in an image, and it will fill it in
- Create image variation
 - Provide an image, and it makes a slightly different one.



Embeddings

- Converts text or code into vectors (of very high dimension)
 - Text or code that is similar to each other will be close to each other in this vector space
- Text similarity
 - Useful for clustering, data viz, classification
 - Dot product of two vectors gives you a "similarity score" (cosine similarity)
 - text-similarity-davinci-
- Text search
 - Embed documents and query
 - Use cosine similarity to find best match
 - text-search-davinci-{doc, query}-
- Code search
 - Same deal, but optimized for code
 - code-search-babbage-{doc, query}-

The starship Enterprise

Spaceballs

The Orville

potato

rhubarb

Completions (now deprecated)

- Legacy API no longer being updated
- You give it a prompt, and it completes it
- Just one prompt, as opposed to a list of messages in the Chat Completions API.
- Can do the same thing in Chat Completions by just passing in a single message.
- Temporary caveat in 2023: completions supports older models than chat completions, and only those older models can be fine-tuned at this time.

```
(base) E:\Dropbox\ChatGPT-Course>python Completions.py
Enter some text to complete: Space: The final frontier.

These are the voyages of the starship Enterprise. Its five-year mission: to explore strange new worlds, to seek out new life and new civilizations, to boldly go where no man has gone before.

(base) E:\Dropbox\ChatGPT-Course>_
```

Fine-tunes

- Adapt an existing large language model to your specific use case!
- Additional training using your own data potentially lots of it
 - Eliminates need to build up a big conversation to get the results you want ("prompt engineering" / "prompt design"
 - Saves on tokens in the long run
- Your fine-tuned model can be used like any other
- You can fine-tune a fine-tuned model, making it "smarter" over time
- Applications:
 - Chatbot with a certain personality or style, or with a certain objective (i.e., customer support, writing ads)
 - Training with data more recent than what the LLM had
 - Training with proprietary data (i.e., your past emails or messages, customer support transcripts)
 - Specific applications (classification, evaluating truth)

Fine-tunes (legacy)

- 1. Prepare your dataset
 - jsonl format, each line is a prompt and an ideal completion.
 - Prompts should end with some sort of separator (like \n\n##\n\n)
 - Completions should begin with whitespace and end with a fixed stop sequence (###, END, whatever – as long as it doesn't appear in the completion.)
 - CLI data preparation tool can validate data (and import from csv, excel, json)
 - You will be charged by the token in this training data.
- 2. Create the fine-tuned model
 - CLI interface where you just pass in the training data and the model to tune
 - This can take hours!
- 3. Use the model!
 - CLI, API, playground

Fine-tuning (newer API)

- Same idea, but input data is in chat completions API format.
- Newer models (GPT-3.5-turbo, GPT 4 coming soon)
- The fine tuned model can be used in chat completions, instead of completions.
- Can provide both training and validation files (use File API to upload them, and refer to their ID's)
- Let's look at an example for specifics...

```
{"messages": [
    {"role": "system", "content": "Data is an android in the TV series Star Trek: The Next Generation."},
    {"role": "user", "content": "PICARD: You will agree, Data, that Starfleet's instructions are difficult?"},
    {"role": "assistant", "content": "DATA: Difficult ... how so? Simply solve the mystery of Farpoint Station."}]
}
```

Moderation

- You give it text
- It tells you if it violates OpenAl's usage policies, and how.
- Detects hate speech, violence, self-harm, and sexual content.
- Returns specific categories it violates (if any) along with the scores for each.

Audio (speech to text)

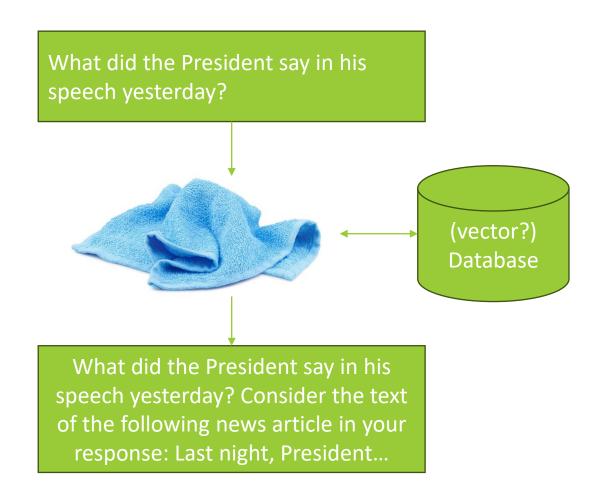
- You pass in an audio file
 - mp3, mp4, mpeg, mpga, m4a, wav, or webm
- It gives you a transcript.
- It's that simple.
- You can include a prompt to guide the style
- Temperature may be specified to adjust determinism
 - Default of 0 uses log probability to try to set it automatically
- Output (response_format) may be json, text, srt, verbose_json, or vtt
- Can also translate foreign speech into English

Retrieval Augmented Generation (RAG)

Or, "cheat to win"

Retrieval Augmented Generation (RAG)

- Like an open-book exam for LLM's
- You query some external database for the answers instead of relying on the LLM
- Then, work those answers into the prompt for the LLM to work with
 - Or, use tools and functions to incorporate the search into the LLM in a slightly more principled way



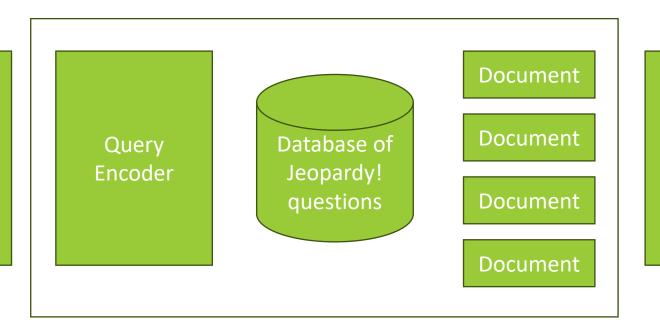
RAG: Pros and Cons

- Faster & cheaper way to incorporate new or proprietary information into "GenAI" vs finetuning
- Updating info is just a matter of updating a database
- Can prevent "hallucinations" when you ask the model about something it wasn't trained on
- If your boss wants "AI search", this is an easy way to deliver it.
- Technically you aren't "training" a model with this data

- You have made the world's most overcomplicated search engine
- Very sensitive to the prompt templates you use to incorporate your data
- Non-deterministic
- It can still hallucinate
- Very sensitive to the relevancy of the information you retrieve

RAG: Example Approach (winning at Jeopardy!)

"In 1986, Mexico scored as the first country to host this international sports competition twice.



Generator The World Cup

Retriever

Basically, we are handing the generator potential answers from an external database.

Choosing a Database for RAG

- You could just use whatever database is appropriate for the type of data you are retrieving
 - Graph database (i.e., Neo4j) for retrieving product recommendations or relationships between items
 - Elasticsearch or something for traditional text search (TF/IDF)
 - The functions / tools API can be used to try and get GPT to provide structured queries and extract info from the original query
 - "RAG with a Graph database" in the OpenAI Cookbook is one example
 - https://cookbook.openai.com/examples/rag with graph db
- But for some reason, most examples you find of RAG use a Vector database

```
Q: 'Which pink items are suitable
for children?'
  "color": "pink",
  "age group": "children"
Q: 'Help me find gardening gear
that is waterproof'
  "category": "gardening gear",
  "characteristic": "waterproof"
Q: 'I'm looking for a bench with
dimensions 100x50 for my living
room'
  "measurement": "100x50",
  "category": "home decoration"
```

Review: embeddings

- An embedding is just a big vector associated with your data
- Think of it as a point in multidimensional space (typically 100's or thousands of dimensions)
- Embeddings are computed such that items that are similar to each other are close to each other in that space
- We can use OpenAl's embeddings API (for example) to compute them en masse

The starship
Enterprise

Spaceballs

The
Orville

potato

rhubarb

Embeddings are vectors, so store them in...

- ...a vector database!
- It just stores your data alongside their computed embedding vectors
- Leverages the embeddings you might already have for ML
- Retrieval looks like this:
 - Compute an embedding vector for the thing you want to search for
 - Query the vector database for the top items close to that vector
 - You get back the top-N most similar things (K-Nearest Neighbor)
 - "Vector search"
- Examples of vector databases
 - Coercing existing databases to do vector search
 - · Elasticsearch, SQL, Neptune, Redis, MongoDB, Cassandra
 - Purpose-built vector DB's
 - Pinecone, Weaviate (commercial)
 - Chroma, Marqo, Vespa, Qdrant, LanceDB, Milvus, vectordb (open source)

The starship
Enterprise

Spaceballs

The

Orville

potato

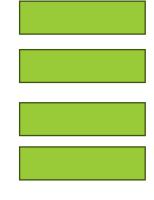
rhubarb

RAG Example with a Vector Database: Making Data from Star Trek, by Cheating.

Data, tell me about your daughter Lal.

Compute embedding vector

Vectordb of Data's script lines



Similar lines

You are Commander Data from Star Trek. How might Data respond to the question "Data, tell me about your daughter Lal", taking into account the following related lines from Data: ...

Prompt + query + relevant data

Let's go actually build that now.

The Ethics of Deep Learning

Types of errors

- Accuracy doesn't tell the whole story
- Type 1: False positive
 - Unnecessary surgery
 - Slam on the brakes for no reason.
- Type 2: False negative
 - Untreated conditions
 - You crash into the car in front of you

 Think about the ramifications of different types of errors from your model, tune it accordingly

Hidden biases

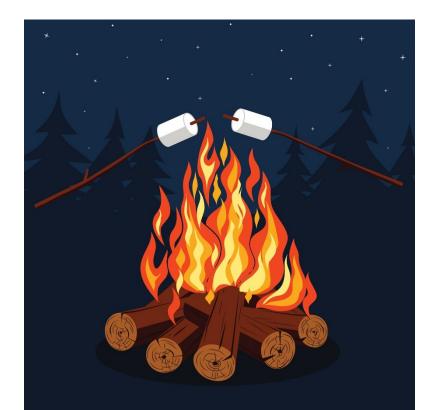
- Just because your model isn't human doesn't mean it's inherently fair
- Example: train a model on what sort of job applicants get hired, use it to screen resumes
 - Past biases toward gender / age / race will be reflected in your model, because it was reflected in the data you trained the model with.

Is it really better than a human?

- Don't oversell the capabilities of an algorithm in your excitement
- Example: medical diagnostics that are almost, but not quite, as good as a human doctor
- Another example: self-driving cars that can kill people

Unintended applications of your research

• Gather 'round the fire while Uncle Frank tells you a story.



Learning More about Deep Learning

Learning more

Final Project

Your Assignment

• Predict if a mass detected in a mammogram is benign or malignant, using the best supervised machine learning model you can find.

