
Getting Set Up

• Use a hosted environment (requires subscription) OR

• Install Anaconda
▫ Open up an Anaconda command prompt

▫ conda install pydotplus

▫ pip install tensorflow

• Download course materials from www.sundog-education.com/machine-
learning

Installation Checklist

Python Basics

Let’s just jump right into some code.

Presented by

Frank Kane

Types of Data

Many Flavors of
Data

• Numerical

• Categorical

• Ordinal

Major Types of Data

• Represents some sort of quantitative
measurement
▫ Heights of people, page load times, stock prices,

etc.

• Discrete Data
▫ Integer based; often counts of some event.

 How many purchases did a customer make in a year?
 How many times did I flip “heads”?

• Continuous Data
▫ Has an infinite number of possible values

 How much time did it take for a user to check out?
 How much rain fell on a given day?

Numerical

• Qualitative data that has no inherent
mathematical meaning

▫ Gender, Yes/no (binary data), Race, State of
Residence, Product Category, Political Party,
etc.

• You can assign numbers to categories in order
to represent them more compactly, but the
numbers don’t have mathematical meaning

Categorical

• A mixture of numerical and categorical

• Categorical data that has mathematical
meaning

• Example: movie ratings on a 1-5 scale.
▫ Ratings must be 1, 2, 3, 4, or 5

▫ But these values have mathematical
meaning; 1 means it’s a worse movie
than a 2.

Ordinal

• Are the following types of data numerical,
categorical, or ordinal?

▫ How much gas is in your gas tank

▫ A rating of your overall health where the
choices are 1, 2, 3, or 4, corresponding to
“poor”, “moderate”, “good”, and “excellent”

▫ The races of your classmates

▫ Ages in years

▫ Money spent in a store

Quiz time!

Mean, Median, and Mode

• AKA Average

• Sum / number of samples

• Example:
▫ Number of children in each house on my street:

Mean

0, 2, 3, 2, 1, 0, 0, 2, 0

The MEAN is (0+2+3+2+1+0+0+2+0) / 9 = 1.11

• Sort the values, and take the value at the midpoint.

• Example:

Median

0, 2, 3, 2, 1, 0, 0, 2, 0
Sort it:

0, 0, 0, 0, 1, 2, 2, 2, 3

• If you have an even number of samples,
take the average of the two in the middle.

• Median is less susceptible to outliers than
the mean
▫ Example: mean household income in the US

is $72,641, but the median is only $51,939 –
because the mean is skewed by a handful of
billionaires.

▫ Median better represents the “typical”
American in this example.

Median

• The most common value in a data set
▫ Not relevant to continuous numerical data

• Back to our number of kids in each house example:

Mode

0, 2, 3, 2, 1, 0, 0, 2, 0
How many of each value are there?

0: 4, 1: 1, 2: 3, 3: 1
The MODE is 0

Standard Deviation and Variance

An example of a histogram

• Variance (𝜎2) is simply the average of the squared differences from the
mean

• Example: What is the variance of the data set (1, 4, 5, 4, 8)?
▫ First find the mean: (1+4+5+4+8)/5 = 4.4

▫ Now find the differences from the mean: (-3.4, -0.4, 0.6, -0.4, 3.6)

▫ Find the squared differences: (11.56, 0.16, 0.36, 0.16, 12.96)

▫ Find the average of the squared differences:
 𝜎2= (11.56 + 0.16 + 0.36 + 0.16 + 12.96) / 5 = 5.04

Variance measures how “spread-out” the data is.

𝜎2 = 5.04

𝜎 = 5.04 = 2.24

So the standard deviation of
(1, 4, 5, 4, 8) is 2.24.

This is usually used as a way to identify outliers. Data points that lie more than
one standard deviation from the mean can be considered unusual.

You can talk about how extreme a data point is by talking about “how many
sigmas” away from the mean it is.

Standard Deviation 𝜎 is just the square root of the
variance.

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8

• If you’re working with a sample of data instead of an entire data set (the
entire population)…
▫ Then you want to use the “sample variance” instead of the “population

variance”

▫ For N samples, you just divide the squared variances by N-1 instead of N.

▫ So, in our example, we computed the population variance like this:
 𝜎2= (11.56 + 0.16 + 0.36 + 0.16 + 12.96) / 5 = 5.04

▫ But the sample variance would be:
 𝑆2= (11.56 + 0.16 + 0.36 + 0.16 + 12.96) / 4 = 6.3

Population vs. Sample

• Population variance:

▫ 𝜎2 =
σ 𝑋−𝜇 2

𝑁

• Sample variance:

▫ 𝑠2 =
σ(𝑋−𝑀)2

𝑁−1

Fancy Math

Let’s look at another example.

Probability Density Functions

Example: a “normal distribution”

Gives you the probability of a data point falling within
some given range of a given value.

Probability Mass Function

Let’s play with some examples.

Percentiles and Moments

• In a data set, what’s the point at which X% of the values are less than
that value?

• Example: income distribution

Percentiles

Percentiles in a normal distribution

Let’s look at some examples.

• Quantitative measures of the shape of a probability density function

• Mathematically they are a bit hard to wrap your head around:

▫ 𝜇𝑛 = ∞−׬
∞

𝑥 − 𝑐 𝑛𝑓 𝑥 𝑑𝑥 (for moment 𝑛 around value 𝑐)

• But intuitively, it’s a lot simpler in statistics.

Moments

The first moment is the mean.

The second moment is the variance.

Yes, it’s just that simple.

• How “lopsided” is the distribution?

• A distribution with a longer tail on the left will be skewed left, and have
a negative skew.

The third moment is “skew” (𝛾)

• How thick is the tail, and how sharp is the peak, compared to a normal
distribution?

• Example: higher peaks have higher kurtosis

The fourth moment is “kurtosis”

Let’s compute the 4 moments in Python.

Covariance and Correlation

• Measures how two variables vary in tandem from their means.

Covariance

• Think of the data sets for the two variables as high-dimensional vectors

• Convert these to vectors of variances from the mean

• Take the dot product (cosine of the angle between them) of the two
vectors

• Divide by the sample size

Measuring covariance

• We know a small covariance, close to 0, means there isn’t much
correlation between the two variables.

• And large covariances – that is, far from 0 (could be negative for inverse
relationships) mean there is a correlation

• But how large is “large”?

Interpreting covariance is hard

• Just divide the covariance by the standard deviations of both variables,
and that normalizes things.

• So a correlation of -1 means a perfect inverse correlation

• Correlation of 0: no correlation

• Correlation 1: perfect correlation

That’s where correlation comes in!

• Only a controlled, randomized experiment can give you insights on
causation.

• Use correlation to decide what experiments to conduct!

Remember: correlation does not imply causation!

Let’s play with some data.

Conditional Probability

• If I have two events that depend on each other, what’s the probability
that both will occur?

• Notation: P(A,B) is the probability of A and B both occurring

• P(B|A) : Probability of B given that A has occurred

• We know:

P(B|A) =
P(A,B)
P(A)

Conditional Probability

• I give my students two tests. 60% of my students passed both tests, but
the first test was easier – 80% passed that one. What percentage of
students who passed the first test also passed the second?

• A = passing the first test, B = passing the second test

• So we are asking for P(B|A) – the probability of B given A

• P(B|A) =
P(A,B)
P(A)

=
0.6

0.8
= 0.75

• 75% of students who passed the first test passed the second.

For example

Let’s do another example using Python.

Bayes’ Theorem

• Now that you understand conditional probability, you can understand Bayes’
Theorem:

𝑃 𝐴 𝐵 =
𝑃 𝐴 𝑃 𝐵 𝐴

𝑃 𝐵

In English – the probability of A given B, is the probability of A times the
probability of B given A over the probability of B.

The key insight is that the probability of something that depends on B depends
very much on the base probability of B and A. People ignore this all the time.

Bayes’ Theorem

• Drug testing is a common example. Even a “highly
accurate” drug test can produce more false
positives than true positives.

• Let’s say we have a drug test that can accurately
identify users of a drug 99% of the time, and
accurately has a negative result for 99% of non-
users. But only 0.3% of the overall population
actually uses this drug.

Bayes’ Theorem to the rescue

• Event A = Is a user of the drug, Event B = tested positively for the drug.

• We can work out from that information that P(B) is 1.3% (0.99 * 0.003 +
0.01 * 0.997 – the probability of testing positive if you do use, plus the
probability of testing positive if you don’t.)

• 𝑃 𝐴 𝐵 =
𝑃 𝐴 𝑃 𝐵 𝐴

𝑃 𝐵
=
0.003 ∗0.99

0.013
= 22.8%

• So the odds of someone being an actual user of the drug given that they
tested positive is only 22.8%!

• Even though P(B|A) is high (99%), it doesn’t mean P(A|B) is high.

Bayes’ Theorem to the rescue

Linear Regression

• Fit a line to a data set of observations

• Use this line to predict unobserved values

• I don’t know why they call it “regression.”
It’s really misleading. You can use it to
predict points in the future, the past,
whatever. In fact time usually has nothing
to do with it.

Linear Regression

• Usually using “least squares”
• Minimizes the squared-error between each point and the

line
• Remember the slope-intercept equation of a line? y=mx+b
• The slope is the correlation between the two variables times

the standard deviation in Y, all divided by the standard
deviation in X.
▫ Neat how standard deviation how some real mathematical

meaning, eh?

• The intercept is the mean of Y minus the slope times the
mean of X

• But Python will do all that for you.

Linear Regression: How does it work?

• Least squares minimizes the sum of squared errors.

• This is the same as maximizing the likelihood of the observed data if you
start thinking of the problem in terms of probabilities and probability
distribution functions

• This is sometimes called “maximum likelihood estimation”

Linear Regression: How does it work?

• Gradient Descent is an alternate method
to least squares.

• Basically iterates to find the line that best
follows the contours defined by the data.

• Can make sense when dealing with 3D
data

• Easy to try in Python and just compare the
results to least squares
▫ But usually least squares is a perfectly good

choice.

More than one way to do it

• How do we measure how well our line fits our data?

• R-squared (aka coefficient of determination) measures:

The fraction of the total variation in Y that is
captured by the model

Measuring error with r-squared

1.0 -
𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟𝑠

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚𝑚𝑒𝑎𝑛

Computing r-squared

• Ranges from 0 to 1

• 0 is bad (none of the variance is captured), 1 is good (all of the variance
is captured).

Interpreting r-squared

Let’s play with an example.

Polynomial Regression

• Not all relationships are linear.

• Linear formula: y = mx + b
▫ This is a “first order” or “first degree”

polynomial, as the power of x is 1

• Second order polynomial: 𝑦 = 𝑎𝑥2 +
𝑏𝑥 + 𝑐

• Third order: 𝑦 = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑

• Higher orders produce more complex
curves.

Why limit ourselves to straight lines?

• Don’t use more degrees than you need

• Visualize your data first to see how complex of a curve there might
really be

• Visualize the fit – is your curve going out of its way to accommodate
outliers?

• A high r-squared simply means your curve fits your training data well;
but it may not be a good predictor.

• Later we’ll talk about more principled ways to detect overfitting
(train/test)

Beware overfitting

• numpy.polyfit() makes it easy.

Let’s play with an example

Multiple Regression

• What if more than one variable
influences the one you’re
interested in?

• Example: predicting a price for a
car based on its many attributes
(body style, brand, mileage, etc.)

• If you also have multiple
dependent variables – things
you’re trying to predict – that’s
“multivariate regression”

Multiple Regression

• We just end up with coefficients for each factor.
▫ For example, 𝑝𝑟𝑖𝑐𝑒 = 𝛼 + 𝛽1mileage + 𝛽2age + 𝛽3doors

▫ These coefficients imply how important each factor is (if the data is all
normalized!)

▫ Get rid of ones that don’t matter!

• Can still measure fit with r-squared

• Need to assume the different factors are not themselves dependent on
each other.

Still uses least squares

• The statsmodel package makes it easy.

Let’s dive into an example.

Multi-Level Models

• The concept is that some effects happen at various levels.

• Example: your health depends on a hierarchy of the health of your cells,
organs, you as a whole, your family, your city, and the world you live in.

• Your wealth depends on your own work, what your parents did, what
your grandparents did, etc.

• Multi-level models attempt to model and account for these
interdependencies.

Multi-Level Models

• You must identify the factors that affect the outcome you’re trying to
predict at each level.

• For example – SAT scores might be predicted based on the genetics of
individual children, the home environment of individual children, the
crime rate of the neighborhood they live in, the quality of the teachers
in their school, the funding of their school district, and the education
policies of their state.

• Some of these factors affect more than one level. For example, crime
rate might influence the home environment too.

Modeling multiple levels

• I just want you to be aware of the concept, as
multi-level models showed up on some data
science job requirements I’ve seen.

• You’re not ready for it yet. Entire advanced
statistics and modeling courses exist on this
one topic alone.

• Thick books exist on it too, when you’re ready.

Doing this is hard.

And the concept of train/test

Supervised and Unsupervised Machine Learning

• Algorithms that can learn from
observational data, and can make
predictions based on it.

What is machine learning?

Yeah, that’s pretty much what your own brain does too.

• The model is not given any “answers” to learn from; it must make sense
of the data just given the observations themselves.

• Example: group (cluster) some objects together into 2 different sets. But
I don’t tell you what the “right” set is for any object ahead of time.

Unsupervised Learning

Do I want big and small things? Round and square things? Red and blue things?
Unsupervised learning could give me any of those results.

• Unsupervised learning sounds awful! Why use it?
• Maybe you don’t know what you’re looking for – you’re looking for

latent variables.
• Example: clustering users on a dating site based on their information

and behavior. Perhaps you’ll find there are groups of people that
emerge that don’t conform to your known stereotypes.

• Cluster movies based on their properties. Perhaps our current concepts
of genre are outdated?

• Analyze the text of product descriptions to find the terms that carry the
most meaning for a certain category.

Unsupervised Learning

• In supervised learning, the data the algorithm
“learns” from comes with the “correct” answers.

• The model created is then used to predict the
answer for new, unknown values.

• Example: You can train a model for predicting car
prices based on car attributes using historical sales
data. That model can then predict the optimal price
for new cars that haven’t been sold before.

Supervised Learning

• If you have a set of training data that includes the
value you’re trying to predict – you don’t have to
guess if the resulting model is good or not.

• If you have enough training data, you can split it
into two parts: a training set and a test set.

• You then train the model using only the training set
• And then measure (using r-squared or some other

metric) the model’s accuracy by asking it to predict
values for the test set, and compare that to the
known, true values.

Evaluating Supervised Learning

Training
set

80%

Test set
20%

Car Sales Data

Training set

Test set

• Need to ensure both sets are large
enough to contain representatives
of all the variations and outliers in
the data you care about

• The data sets must be selected
randomly

• Train/test is a great way to guard
against overfitting

Train / Test in practice

• Maybe your sample sizes are too small

• Or due to random chance your train and
test sets look remarkably similar

• Overfitting can still happen

Train/Test is not Infallible

• One way to further protect against overfitting is K-fold cross validation

• Sounds complicated. But it’s a simple idea:
▫ Split your data into K randomly-assigned segments

▫ Reserve one segment as your test data

▫ Train on each of the remaining K-1 segments and measure their
performance against the test set

▫ Take the average of the K-1 r-squared scores

K-fold Cross Validation

Let’s go do some training and testing.

Bayesian Methods

• 𝑃 𝐴 𝐵 =
𝑃 𝐴 𝑃(𝐵|𝐴)

𝑃 𝐵

• Let’s use it for machine learning! I want a spam classifier.
• Example: how would we express the probability of an email being spam if it

contains the word “free”?

• 𝑃 𝑆𝑝𝑎𝑚 𝐹𝑟𝑒𝑒) =
𝑃 𝑆𝑝𝑎𝑚 𝑃 𝐹𝑟𝑒𝑒 𝑆𝑝𝑎𝑚)

𝑃 𝐹𝑟𝑒𝑒

• The numerator is the probability of a message being spam and containing the
word “free” (this is subtly different from what we’re looking for)

• The denominator is the overall probability of an email containing the word
“free”. (Equivalent to P(Free|Spam)P(Spam) + P(Free|Not Spam)P(Not Spam))

• So together – this ratio is the % of emails with the word “free” that are spam.

Remember Bayes’ Theorem?

• We can construct P(Spam | Word) for every
(meaningful) word we encounter during training

• Then multiply these together when analyzing a
new email to get the probability of it being spam.

• Assumes the presence of different words are
independent of each other – one reason this is
called “Naïve Bayes”.

What about all the other words?

• Scikit-learn to the rescue!

• The CountVectorizer lets us operate on lots of words at once, and
MultinomialNB does all the heavy lifting on Naïve Bayes.

• We’ll train it on known sets of spam and “ham” (non-spam) emails
▫ So this is supervised learning!

• Let’s do this

Sounds like a lot of work.

K-Means Clustering

• Attempts to split data into K groups that are
closest to K centroids

• Unsupervised learning – uses only the
positions of each data point

• Can uncover interesting groupings of people
/ things / behavior
▫ Example: Where do millionaires live?
▫ What genres of music / movies / etc. naturally

fall out of data?
▫ Create your own stereotypes from

demographic data

K-Means Clustering

• Sounds fancy! Wow! Unsupervised machine learning! Clusters! K!

• Actually how it works is really simple.
▫ Randomly pick K centroids (k-means)

▫ Assign each data point to the centroid it’s closest to

▫ Recompute the centroids based on the average position of each centroid’s
points

▫ Iterate until points stop changing assignment to centroids

• If you want to predict the cluster for new points, just find the centroid
they’re closest to.

K-Means Clustering

Graphical example

Images from Wikimedia Commons

• Choosing K
▫ Try increasing K values until you stop getting large reductions in squared

error (distances from each point to their centroids)

• Avoiding local minima
▫ The random choice of initial centroids can yield different results

▫ Run it a few times just to make sure your initial results aren’t wacky

• Labeling the clusters
▫ K-Means does not attempt to assign any meaning to the clusters you find

▫ It’s up to you to dig into the data and try to determine that

K-Means Clustering Gotchas

• Again, scikit-learn makes this easy.

Let’s cluster stuff.

Entropy

• A measure of a data set’s disorder – how same
or different it is.

• If we classify a data set into N different classes
(example: a data set of animal attributes and
their species)
▫ The entropy is 0 if all of the classes in the data are

the same (everyone is an iguana)

▫ The entropy is high if they’re all different

• Again, a fancy word for a simple concept.

Entropy

• 𝐻 𝑆 = −𝑝1 ln 𝑝1 − ⋯− 𝑝𝑛 ln 𝑝𝑛
• 𝑝𝑖 represents the proportion of the data labeled for each class

• Each term looks like this:

Computing entropy

Decision Trees

• You can actually construct a
flowchart to help you decide a
classification for something with
machine learning

• This is called a Decision Tree

• Another form of supervised learning
▫ Give it some sample data and the

resulting classifications

▫ Out comes a tree!

Decision Trees

• You want to build a system to filter out resumes based on historical
hiring data

• You have a database of some important attributes of job candidates,
and you know which ones were hired and which ones weren’t

• You can train a decision tree on this data, and arrive at a system for
predicting whether a candidate will get hired based on it!

Decision Tree example

Totally Fabricated Hiring Data

Candidate
ID

Years
Experience

Employed?
Previous
employers

Level of
Education

Top-tier
school

Interned Hired

0 10 1 4 0 0 0 1

1 0 0 0 0 1 1 1

2 7 0 6 0 0 0 0

3 2 1 1 1 1 0 1

4 20 0 2 2 1 0 0

Totally Fabricated Should-I-Hire-This-Person Tree

Did an internship?

Currently
employed?

Less than one prior
employer?

Attended a top-tier
school?

No Yes

No Yes

No Yes

No Yes

Hire!

Hire!

Hire!

Don’t Hire!

Don’t Hire!

• At each step, find the attribute we can use to partition the data set to
minimize the entropy of the data at the next step

• Fancy term for this simple algorithm: ID3

• It is a greedy algorithm – as it goes down the tree, it just picks the
decision that reduce entropy the most at that stage.
▫ That might not actually result in an optimal tree.

▫ But it works.

How Decision Trees Work

• Decision trees are very susceptible to
overfitting

• To fight this, we can construct several
alternate decision trees and let them “vote”
on the final classification
▫ Randomly re-sample the input data for each

tree (fancy term for this: bootstrap
aggregating or bagging)

▫ Randomize a subset of the attributes each
step is allowed to choose from

Random Forests

• Yet again, scikit-learn is awesome for this.

Let’s go make some trees.

Ensemble Learning

• Random Forests was an example of ensemble learning

• It just means we use multiple models to try and solve the same
problem, and let them vote on the results.

Ensemble Learning

• Random Forests uses bagging (bootstrap aggregating) to implement
ensemble learning
▫ Many models are built by training on randomly-drawn subsets of the data

• Boosting is an alternate technique where each subsequent model in the
ensemble boosts attributes that address data mis-classified by the previous
model

• A bucket of models trains several different models using training data, and
picks the one that works best with the test data

• Stacking runs multiple models at once on the data, and combines the results
together
▫ This is how the Netflix prize was won!

Ensemble Learning

• Bayes Optimal Classifier
▫ Theoretically the best – but almost always impractical

• Bayesian Parameter Averaging
▫ Attempts to make BOC practical – but it’s still misunderstood, susceptible

to overfitting, and often outperformed by the simpler bagging approach

• Bayesian Model Combination
▫ Tries to address all of those problems

▫ But in the end, it’s about the same as using cross-validation to find the best
combination of models

Advanced Ensemble Learning: Ways to Sound Smart

XGBoost

• eXtreme Gradient Boosted trees
• Remember boosting is an ensemble

method
▫ Each tree boosts attributes that led to mis-

classifications of previous tree

• It is AMAZING
▫ Routinely wins Kaggle competitions
▫ Easy to use
▫ Fast
▫ A good choice for an algorithm to start

with

XGBoost
booster[0]:
0:[f2<2.3499999] yes=1,no=2,missing=1
 1:leaf=0.425454557
 2:leaf=-0.218918934
booster[1]:
0:[f2<2.3499999] yes=1,no=2,missing=1
 1:leaf=-0.212727293
 2:[f3<1.75] yes=3,no=4,missing=3
 3:[f2<4.94999981] yes=5,no=6,missing=5
 5:leaf=0.404698014
 6:leaf=0.0310344752
 4:[f2<4.94999981] yes=7,no=8,missing=7
 7:leaf=-0.0360000096
 8:leaf=-0.212101951
booster[2]:
0:[f3<1.6500001] yes=1,no=2,missing=1
 1:[f2<4.94999981] yes=3,no=4,missing=3
 3:leaf=-0.218272462
 4:leaf=0.179999992
 2:[f2<4.85000038] yes=5,no=6,missing=5
 5:leaf=0.128571421
 6:leaf=0.410059184
booster[3]:
0:[f2<2.3499999] yes=1,no=2,missing=1
 1:leaf=0.293001503
 2:leaf=-0.195878834
booster[4]:
0:[f2<2.3499999] yes=1,no=2,missing=1
 1:leaf=-0.189249262
 2:[f3<1.75] yes=3,no=4,missing=3
 3:[f2<4.94999981] yes=5,no=6,missing=5
 5:leaf=0.278669834
 6:leaf=0.0307718068
 4:[f2<4.94999981] yes=7,no=8,missing=7
 7:leaf=-0.0279411841
 8:leaf=-0.189206496

• Regularized boosting (prevents overfitting)
• Can handle missing values automatically
• Parallel processing
• Can cross-validate at each iteration
▫ Enables early stopping, finding optimal number

of iterations

• Incremental training
• Can plug in your own optimization objectives
• Tree pruning
▫ Generally results in deeper, but optimized,

trees

Features of XGBoost

• Pip install xgboost

• Also CLI, C++, R, Julia, JVM interfaces

• It’s not just made for scikit_learn, so it has its own interface
▫ Uses DMatrix structure to hold features & labels

 Can create this easily from a numpy array though

▫ All parameters passed in via a dictionary

• Call train, then predict. It’s easy.

Using XGBoost

• Booster
▫ gbtree or gblinear

• Objective (ie, multi:softmax, multi:softprob)

• Eta (learning rate – adjusts weights on each
step)

• Max_depth (depth of the tree)

• Min_child_weight
▫ Can control overfitting, but too high will

underfit

• …and many others

XGBoost Hyperparameters

• It’s almost all that you need to know for ML
in practical terms, at least for simple
classification or regression problems.

• Let’s see it in action.

XGBoost

Support Vector Machines

• Works well for classifying higher-dimensional data (lots of features)

• Finds higher-dimensional support vectors across which to divide the
data (mathematically, these support vectors define hyperplanes.
Needless to say I’m not going to get into the mathematical details!)

• Uses something called the kernel trick to represent data in higher-
dimensional spaces to find hyperplanes that might not be apparent in
lower dimensions

Support Vector Machines

• The important point is that SVM’s employ some advanced mathematical
trickery to cluster data, and it can handle data sets with lots of features.

• It’s also fairly expensive – the “kernel trick” is the only thing that makes
it possible.

Higher dimensions? Hyperplanes? Huh?

• In practice you’ll use something
called SVC to classify data using
SVM.

• You can use different “kernels” with
SVC. Some will work better than
others for a given data set.

Support Vector Classification

• Don’t even try to do this without scikit-learn.

Let’s play with SVC’s

Recommender Systems

What are recommender systems?

• Build a matrix of things each user bought/viewed/rated

• Compute similarity scores between users

• Find users similar to you

• Recommend stuff they bought/viewed/rated that you haven’t yet.

User-Based Collaborative Filtering

User-Based Collaborative Filtering

User-Based Collaborative Filtering

• People are fickle; tastes change

• There are usually many more people than things

• People do bad things

Problems with User-Based CF

• A movie will always be the same movie – it doesn’t change

• There are usually fewer things than people (less computation to do)

• Harder to game the system

What if we based recommendations on relationships
between things instead of people?

• Find every pair of movies that were watched by the same person

• Measure the similarity of their ratings across all users who watched
both

• Sort by movie, then by similarity strength

• (This is just one way to do it!)

Item-Based Collaborative Filtering

Item-Based Collaborative Filtering

Item-Based Collaborative Filtering

Item-Based Collaborative Filtering

Item-Based Collaborative Filtering

• Next, we’ll use Python to create real “movie similarities” using the real
MovieLens data set.
▫ In addition to being important for item-based collaborative filtering, these

results are valuable in themselves – think “people who liked X also liked Y”

• It’s real world data, and we’ll encounter real world problems

• Then we’ll use those results to create movie recommendations for
individuals

Let’s Do This

K-Nearest Neighbor

• Used to classify new data points based on “distance” to known data

• Find the K nearest neighbors, based on your distance metric

• Let them all vote on the classification

• That’s it!

K-Nearest Neighbor (KNN)

• Although it’s one of the simplest machine learning models there is – it
still qualifies as “supervised learning”.

• But let’s do something more complex with it

• Movie similarities just based on metadata!

It’s Really That Simple

Discrete Choice Models

• Predict some choice people have
between discrete alternatives
▫ Do I take the train, bus, or car to work

today? (Multinomial choice)

▫ Which college will I go to? (Multinomial)

▫ Will I cheat on my spouse? (Binary)

• The alternatives must be finite,
exhaustive, and mutually exclusive

Discrete Choice Models

• Use some sort of regression on the relevant
attributes
▫ Attributes of the people
▫ Variables of the alternatives

• Generally uses Logit or Probit models
▫ Logistic Regression, Probit Model
▫ Based on some utility function you define
▫ Similar – one uses logistic distribution, Probit uses

normal distribution. Logistic looks a lot like normal, but
with fatter tails (higher kurtosis)

Discrete Choice Models

• Will my spouse cheat on me?

Example

Principal Component Analysis

The Curse of Dimensionality

• Many problems can be thought of as having a huge number of
“dimesions”

• For example, in recommending movies, the ratings vector for each
movie may represent a dimension – every movie is its own dimension!

• That makes your head hurt. It’s tough to visualize.

• Dimensionality reduction attempts to distill higher-dimensional data
down to a smaller number of dimensions, while preserving as much of
the variance in the data as possible.

What is the curse of dimensionality?

• This is an example of a dimensionality reduction algorithm.

• It reduces data down to K dimensions.

Remember K-Means Clustering?

• Involves fancy math – but at a high level:

• Finds “eigenvectors” in the higher dimensional data
▫ These define hyperplanes that split the data while

preserving the most variance in it

▫ The data gets projected onto these hyperplanes, which
represent the lower dimensions you want to represent

▫ A popular implementation of this is called Singular Value
Decomposition (SVD)

• Also really useful for things like image compression
and facial recognition

Another way: Principal Component Analysis (PCA)

• The “Iris dataset” comes with scikit-learn
• An Iris flower has petals and sepals (the

lower, supportive part of the flower.)
• We know the length and width of the petals

and sepals for many Iris specimens
▫ That’s four dimensions! Ow.
▫ We also know the subspecies classification of

each flower

• PCA lets us visualize this in 2 dimensions
instead of 4, while still preserving variance.

Example: Visualizing 4-D Iris Flower Data

• Yet again, scikit-learn makes this complex technique really easy.

Example: Visualizing 4-D Iris Flower Data

Data Warehousing Introduction

ETL and ELT

• A large, centralized database that contains
information from many sources

• Often used for business analysis in large corporations
or organizations

• Queried via SQL or tools (i.e. Tableau)
• Often entire departments are dedicated to

maintaining a data warehouse
▫ Data normalization is tricky – how does all of this data

relate to each other? What views do people need?
▫ Maintaining the data feeds is a lot of work
▫ Scaling is tricky

What is Data Warehousing?

• ETL and ELT refer to how data gets into a data warehouse.

• Traditionally, the flow was Extract, Transform, Load:
▫ Raw data from operational systems is first periodically

extracted

▫ Then, the data is transformed into the schema needed by the
DW

▫ Finally, the data is loaded into the data warehouse, already in
the structure needed

• But what if we’re dealing with “big data”? That transform
step can turn into a big problem.

ETL: Extract, Transform, Load

• Today, a huge Oracle instance isn’t the only choice for a large
data warehouse

• Things like Hive let you host massive databases on a Hadoop
cluster

• Or, you might store it in a large, distributed NoSQL data store
▫ …and query it using things like Spark or MapReduce

• The scalability of Hadoop lets you flip the loading process on
its head
▫ Extract raw data as before
▫ Load it in as-is
▫ Then use the power of Hadoop to transform it in-place

ELT: Extract, Load, Transform

• Data warehousing is a discipline in itself, too big too cover here

• Check out other courses on Big Data, Spark, and MapReduce
▫ We will cover Spark in more depth later in this course.

Lots more to explore

Reinforcement Learning

• You have some sort of agent that “explores” some space
• As it goes, it learns the value of different state changes in different

conditions
• Those values inform subsequent behavior of the agent
• Examples: Pac-Man, Cat & Mouse game
• Yields fast on-line performance once the space has been explored

Reinforcement Learning

• A specific implementation of reinforcement learning

• You have:
▫ A set of environmental states s

▫ A set of possible actions in those states a

▫ A value of each state/action Q

• Start off with Q values of 0

• Explore the space

• As bad things happen after a given state/action, reduce its Q

• As rewards happen after a given state/action, increase its Q

Q-Learning

• What are some state/actions here?
▫ Pac-man has a wall to the West
▫ Pac-man dies if he moves one step South
▫ Pac-man just continues to live if going North or East

• You can “look ahead” more than one step by using a discount factor when
computing Q (here s is previous state, s’ is current state)
▫ Q(s,a) += discount * (reward(s,a) + max(Q(s’)) – Q(s,a))

Q-Learning

Q(s, a) += alpha * (reward(s,a) + max(Q(s') - Q(s,a)) where s is the previous state, a is the previous action,s' is the current state, and alpha is the discount factor (set to .5 here).

• How do we efficiently explore all of the possible states?
▫ Simple approach: always choose the action for a given state with the

highest Q. If there’s a tie, choose at random
 But that’s really inefficient, and you might miss a lot of paths that way

▫ Better way: introduce an epsilon term
 If a random number is less than epsilon, don’t follow the highest Q, but choose

at random

 That way, exploration never totally stops

 Choosing epsilon can be tricky

The exploration problem

• Markov Decision Process
▫ From Wikipedia: Markov decision processes (MDPs) provide a mathematical

framework for modeling decision making in situations where outcomes are
partly random and partly under the control of a decision maker.

▫ Sound familiar? MDP’s are just a way to describe what we just did using
mathematical notation.

▫ States are still described as s and s’

▫ State transition functions are described as 𝑃𝑎 𝑠, 𝑠′

▫ Our “Q” values are described as a reward function 𝑅𝑎 𝑠, 𝑠′

• Even fancier words! An MDP is a discrete time stochastic control process.

Fancy Words

https://en.wikipedia.org/wiki/Decision_making
https://en.wikipedia.org/wiki/Randomness#In_mathematics

• Dynamic Programming
▫ From Wikipedia: dynamic programming is a method for solving a complex

problem by breaking it down into a collection of simpler subproblems,
solving each of those subproblems just once, and storing their solutions -
ideally, using a memory-based data structure. The next time the same
subproblem occurs, instead of recomputing its solution, one simply looks
up the previously computed solution, thereby saving computation time at
the expense of a (hopefully) modest expenditure in storage space.

▫ Sound familiar?

More Fancy Words

• You can make an intelligent Pac-Man in a few steps:
▫ Have it semi-randomly explore different choices of

movement (actions) given different conditions (states)

▫ Keep track of the reward or penalty associated with
each choice for a given state/action (Q)

▫ Use those stored Q values to inform its future choices

• Pretty simple concept. But hey, now you can say you
understand reinforcement learning, Q-learning,
Markov Decision Processes, and Dynamic
Programming!

So to recap

• Python Markov Decision Process Toolbox:
▫ http://pymdptoolbox.readthedocs.org/en/latest/api/mdp.html

• Cat & Mouse Example:
▫ https://github.com/studywolf/blog/tree/master/RL/Cat%20vs%20Mouse%

20exploration

• Pac-Man Example:
▫ https://inst.eecs.berkeley.edu/~cs188/sp12/projects/reinforcement/reinfor

cement.html

Implementing Reinforcement Learning

http://pymdptoolbox.readthedocs.org/en/latest/api/mdp.html
https://github.com/studywolf/blog/tree/master/RL/Cat%20vs%20Mouse%20exploration
https://github.com/studywolf/blog/tree/master/RL/Cat%20vs%20Mouse%20exploration
https://inst.eecs.berkeley.edu/~cs188/sp12/projects/reinforcement/reinforcement.html
https://inst.eecs.berkeley.edu/~cs188/sp12/projects/reinforcement/reinforcement.html

Confusion Matrix

Sometimes accuracy doesn’t tell the whole story

• A test for a rare disease can be 99.9%
accurate by just guessing “no” all the
time

• We need to understand true positives
and true negative, as well as false
positives and false negatives.

• A confusion matrix shows this.

Binary confusion matrix
Actual YES Actual NO

Predicted YES TRUE POSITIVES FALSE POSITIVES

Predicted NO FALSE NEGATIVES TRUE NEGATIVE

Image has cat?
Actual cat Actual not cat

Predicted cat 50 5

Predicted not cat 10 100

Another format
Predicted
NO

Predicted
YES

Actual NO 50 5 55

Actual YES 10 100 110

60 105

Multi-class confusion matrix + heat map

Measuring your Models

Remember our friend the confusion matrix

Actual YES Actual NO

Predicted YES TRUE POSITIVES FALSE POSITIVES

Predicted NO FALSE NEGATIVES TRUE NEGATIVE

Recall

•
𝑇𝑅𝑈𝐸 𝑃𝑂𝑆𝐼𝑇𝐼𝑉𝐸𝑆

𝑇𝑅𝑈𝐸 𝑃𝑂𝑆𝐼𝑇𝐼𝑉𝐸𝑆+𝐹𝐴𝐿𝑆𝐸 𝑁𝐸𝐺𝐴𝑇𝐼𝑉𝐸𝑆

• AKA Sensitivity, True Positive rate,
Completeness

• Percent of positives correctly predicted

• Good choice of metric when you care a lot
about false negatives
▫ i.e., fraud detection

Recall example
Actual fraud Actual not fraud

Predicted fraud 5 20

Predicted not fraud 10 100

Recall = TP/(TP+FN)

Recall = 5/(5+10) = 5/15 = 1/3 = 33%

Precision

•
𝑇𝑅𝑈𝐸 𝑃𝑂𝑆𝐼𝑇𝐼𝑉𝐸𝑆

𝑇𝑅𝑈𝐸 𝑃𝑂𝑆𝐼𝑇𝐼𝑉𝐸𝑆+𝐹𝐴𝐿𝑆𝐸 𝑃𝑂𝑆𝐼𝑇𝐼𝑉𝐸𝑆

• AKA Correct Positives

• Percent of relevant results

• Good choice of metric when you care a lot
about false positives
▫ i.e., medical screening, drug testing

Precision example

Actual fraud Actual not fraud

Predicted fraud 5 20

Predicted not fraud 10 100

Precision = TP/(TP+FP)

Precision = 5/(5+20) = 5/25 = 1/5 = 20%

Other metrics

• Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
= “True negative rate”

• F1 Score

▫
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁

▫ 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

▫ Harmonic mean of precision and sensitivity
▫ When you care about precision AND recall

• RMSE
▫ Root mean squared error, exactly what it sounds like
▫ Accuracy measurement
▫ Only cares about right & wrong answers

ROC Curve

• Receiver Operating Characteristic Curve

• Plot of true positive rate (recall) vs. false
positive rate at various threshold settings.

• Points above the diagonal represent good
classification (better than random)

• Ideal curve would just be a point in the
upper-left corner

• The more it’s “bent” toward the upper-left,
the better

BOR at the English language Wikipedia [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0/)]

AUC

• The area under the ROC curve is… wait for it..

• Area Under the Curve (AUC)

• Equal to probability that a classifier will rank a
randomly chosen positive instance higher than
a randomly chosen negative one

• ROC AUC of 0.5 is a useless classifier, 1.0 is
perfect

• Commonly used metric for comparing
classifiers

The Bias / Variance Tradeoff

• Bias is how far removed the
mean of your predicted values
is from the “real” answer

• Variance is how scattered your
predicted values are from the
“real” answer

• Describe the bias and variance
of these four cases (assuming
the center is the correct result)

Bias and Variance

• It comes down to overfitting vs underfitting your data

Often you need to choose between bias and variance

• Bias and variance both contribute to error

▫ 𝐸𝑟𝑟𝑜𝑟 = 𝐵𝑖𝑎𝑠2 + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

• But it’s error you want to minimize, not bias or variance specifically

• A complex model will have high variance and low bias

• A too-simple model will have low variance and high bias

• But both may have the same error – the optimal complexity is in the
middle

But what you really care about is error

• Increasing K in K-Nearest-Neighbors decreases variance and increases
bias (by averaging together more neighbors)

• A single decision tree is prone to overfitting – high variance
▫ But a random forest decreases that variance.

Tying it to earlier lessons

Using K-Fold Cross Validation

Avoiding Overfitting

• One way to further protect against overfitting is K-fold cross validation

• Sounds complicated. But it’s a simple idea:
▫ Split your data into K randomly-assigned segments

▫ Reserve one segment as your test data

▫ Train on the combined remaining K-1 segments and measure their
performance against the test set

▫ Repeat for each segment

▫ Take the average of the K r-squared scores

• Prevents you from overfitting to a single train/test split

Review: K-Fold Cross Validation

• Scikit-learn makes this really easy. Even easier than just a single
train/test split.

• In practice, you need to try different variations of your model and
measure the mean accuracy using K-Fold Cross validation until you find
a sweet spot

Using K-Fold Cross Validation

• Use K-Fold Cross Validation with a SVC model of Iris classification.
We’ll see that without K-Fold, we could overfit the model.

Let’s Play

Cleaning Your Data

• The reality is, much of your time as a data
scientist will be spent preparing and “cleaning”
your data
▫ Outliers
▫ Missing Data
▫ Malicious Data
▫ Erroneous Data
▫ Irrelevant Data
▫ Inconsistent Data
▫ Formatting

Cleaning your Data

• Look at your data! Examine it!

• Question your results!
▫ And always do this – not just when you

don’t get a result that you like!

Garbage In, Garbage Out

• All I want is the most-popular pages on my
non-profit news website.

• How hard can that be?

Let’s analyze some web log data.

Normalizing Numerical Data

• If your model is based on several numerical attributes – are they
comparable?
▫ Example: ages may range from 0-100, and incomes from 0-billions

▫ Some models may not perform well when different attributes are on very
different scales

▫ It can result in some attributes counting more than others

▫ Bias in the attributes can also be a problem.

The importance of normalizing data

• Scikit-learn’s PCA implementation has a “whiten” option that does this
for you. Use it.

• Scikit-learn has a preprocessing module with handy normalize and scale
functions

• Your data may have “yes” and “no” that needs to be converted to “1”
and “0”

Examples

• Most data mining and machine learning techniques work fine with raw,
un-normalized data

• But double check the one you’re using before you start.

• Don’t forget to re-scale your results when you’re done!

Read the docs

Dealing with Outliers

• Sometimes it’s appropriate to remove outliers from your
training data

• Do this responsibly! Understand why you are doing this.
• For example: in collaborative filtering, a single user who

rates thousands of movies could have a big effect on
everyone else’s ratings. That may not be desirable.

• Another example: in web log data, outliers may represent
bots or other agents that should be discarded.

• But if someone really wants the mean income of US
citizens for example, don’t toss out billionaires just
because you want to.

Dealing with Outliers

• Our old friend standard deviation provides a principled way to classify
outliers.

• Find data points more than some multiple of a standard deviation in
your training data.

• What multiple? You just have to use common sense.

Dealing with Outliers

Let’s play with some data.

Feature Engineering

What is feature engineering?

• Applying your knowledge of the data – and the model you’re using - to
create better features to train your model with.
▫ Which features should I use?
▫ Do I need to transform these features in some way?
▫ How do I handle missing data?
▫ Should I create new features from the existing ones?

• You can’t just throw in raw data and expect good results
• This is the art of machine learning; where expertise is applied
• “Applied machine learning is basically feature engineering” – Andrew

Ng

The Curse of Dimensionality
• Too many features can be a problem –

leads to sparse data
• Every feature is a new dimension
• Much of feature engineering is selecting

the features most relevant to the problem
at hand
▫ This often is where domain knowledge

comes into play
• Unsupervised dimensionality reduction

techniques can also be employed to distill
many features into fewer features
▫ PCA
▫ K-Means

Imputing Missing Data: Mean Replacement
• Replace missing values with the mean value from the

rest of the column (columns, not rows! A column
represents a single feature; it only makes sense to take
the mean from other samples of the same feature.)

• Fast & easy, won’t affect mean or sample size of
overall data set

• Median may be a better choice than mean when
outliers are present

• But it’s generally pretty terrible.
▫ Only works on column level, misses correlations between

features
▫ Can’t use on categorical features (imputing with most

frequent value can work in this case, though)
▫ Not very accurate

Imputing Missing Data: Dropping

• If not many rows contain missing data…
▫ …and dropping those rows doesn’t bias

your data…
▫ …and you don’t have a lot of time…
▫ …maybe it’s a reasonable thing to do.

• But, it’s never going to be the right
answer for the “best” approach.

• Almost anything is better. Can you
substitute another similar field perhaps?
(i.e., review summary vs. full text)

Imputing Missing Data: Machine Learning

• KNN: Find K “nearest” (most similar) rows and average their values
▫ Assumes numerical data, not categorical
▫ There are ways to handle categorical data (Hamming distance), but categorical

data is probably better served by…

• Deep Learning
▫ Build a machine learning model to impute data for your machine learning model!
▫ Works well for categorical data. Really well. But it’s complicated.

• Regression
▫ Find linear or non-linear relationships between the missing feature and other

features
▫ Most advanced technique: MICE (Multiple Imputation by Chained Equations)

Imputing Missing Data: Just Get More Data

• What’s better than imputing data? Getting more real data!

• Sometimes you just have to try harder or collect more data

Handling Unbalanced Data

What is unbalanced data?
• Large discrepancy between

“positive” and “negative” cases
▫ i.e., fraud detection. Fraud is rare,

and most rows will be not-fraud
▫ Don’t let the terminology confuse

you; “positive” doesn’t mean
“good”
 It means the thing you’re testing for

is what happened.
 If your machine learning model is

made to detect fraud, then fraud is
the positive case.

• Mainly a problem with neural
networks

Oversampling

• Duplicate samples from the
minority class

• Can be done at random

Undersampling

• Instead of creating more positive
samples, remove negative ones

• Throwing data away is usually not
the right answer
▫ Unless you are specifically trying

to avoid “big data” scaling issues

SMOTE

• Synthetic Minority Over-sampling TEchnique

• Artificially generate new samples of the minority class using nearest
neighbors
▫ Run K-nearest-neighbors of each sample of the minority class

▫ Create a new sample from the KNN result (mean of the neighbors)

• Both generates new samples and undersamples majority class

• Generally better than just oversampling

Adjusting thresholds

• When making predictions about a
classification (fraud / not fraud), you have
some sort of threshold of probability at
which point you’ll flag something as the
positive case (fraud)

• If you have too many false positives, one
way to fix that is to simply increase that
threshold.
▫ Guaranteed to reduce false positives
▫ But, could result in more false negatives

Binning
• Bucket observations together based on

ranges of values.
• Example: estimated ages of people
▫ Put all 20-somethings in one

classification, 30-somethings in another,
etc.

• Quantile binning categorizes data by
their place in the data distribution
▫ Ensures even sizes of bins

• Transforms numeric data to ordinal
data

• Especially useful when there is
uncertainty in the measurements

Transforming

Image: By Autopilot - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=10733854

• Feature data with an exponential trend may
benefit from a logarithmic transform

• Applying some function to a feature to make it
better suited for training

• Example: YouTube recommendations
• A numeric feature 𝑥 is also represented by
𝑥2and 𝑥

• This allows learning of super and sub-linear
functions

• (ref: https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45530.pdf)

https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/45530.pdf

Encoding

• Transforming data into some new
representation required by the model

• One-hot encoding
▫ Create “buckets” for every category

▫ The bucket for your category has a 1,
all others have a 0

▫ Very common in deep learning, where
categories are represented by
individual output “neurons”

0 0 0 0 0 0 0 0 1 0

Scaling / Normalization

• Some models prefer feature data to be
normally distributed around 0 (most neural
nets)

• Most models require feature data to at least
be scaled to comparable values
▫ Otherwise features with larger magnitudes

will have more weight than they should
▫ Example: modeling age and income as

features – incomes will be much higher
values than ages

• Scikit_learn has a preprocessor module that
helps (MinMaxScaler, etc)

• Remember to scale your results back up

Geek3 [CC BY 3.0 (https://creativecommons.org/licenses/by/3.0)]

Shuffling

• Many algorithms benefit from
shuffling their training data

• Otherwise they may learn from
residual signals in the training
data resulting from the order in
which they were collected

Installing Apache Spark on Windows

• Install a JDK

• Install Python (but you should already have this)

• Install a pre-built version of Spark for Hadoop

• Create a conf/log4j.properties file to change the warning level

• Add a SPARK_HOME environment variable

• Add %SPARK_HOME%\bin to your PATH

• Set HADOOP_HOME to c:\winutils

• Install winutils.exe to c:\winutils\bin

Installing Spark on Windows

• Pretty much the same, but look up how to set environment variables on
your OS

• Winutils.exe not needed of course

Installing Spark on other OS’s

Let’s Do It

Spark Introduction

• "A fast and general engine for large-scale data processing"

What is Spark?

It’s Scalable

Driver Program
 -Spark Context

Cluster Manager
(Spark, YARN)

Executor
- Cache

-Tasks

Executor
- Cache

-Tasks

Executor
- Cache

-Tasks

...

• "Run programs up to 100x faster than Hadoop MapReduce

in memory, or 10x faster on disk."

• DAG Engine (directed acyclic graph) optimizes workflows

It’s Fast

• Amazon

• Ebay: log analysis and aggregation

• NASA JPL: Deep Space Network

• Groupon

• TripAdviser

• Yahoo

• Many others:

https://cwiki.apache.org/confluence/display/SPARK/Power

ed+By+Spark

It’s Hot

• Code in Python, Java, or Scala

• Built around one main concept: the Resilient Distributed Dataset (RDD)

It’s Not That Hard

Components of Spark

Spark Streaming Spark SQL MLLib GraphX

SPARK CORE

• Why Python?

▫ No need to compile, manage dependencies, etc.

▫ Less coding overhead

▫ You already know Python

▫ Lets us focus on the concepts instead of a new language

• But...

▫ Scala is probably a more popular choice with Spark.

▫ Spark is built in Scala, so coding in Scala is "native" to Spark

▫ New features, libraries tend to be Scala-first.

Python vs. Scala

• Python and Scala look very similar in Spark.

Fear Not

Python code to square numbers in a data set:

nums = sc.parallelize([1, 2, 3, 4])

squared = nums.map(lambda x: x * x).collect()

Scala code to square numbers in a data set:

val nums = sc.parallelize(List(1, 2, 3, 4))

val squared = nums.map(x => x * x).collect()

Resilient Distributed Datasets (RDDs)

• Resilient

• Distributed

• Dataset

RDD

• Created by your driver program

• Is responsible for making RDD's resilient and distributed!

• Creates RDD's

• The Spark shell creates a "sc" object for you

The SparkContext

• nums = parallelize([1, 2, 3, 4])
• sc.textFile("file:///c:/users/frank/gobs-o-text.txt")

▫ or s3n:// , hdfs://

• hiveCtx = HiveContext(sc) rows = hiveCtx.sql("SELECT name, age FROM
users")

• Can also create from:
▫ JDBC
▫ Cassandra
▫ HBase
▫ Elastisearch
▫ JSON, CSV, sequence files, object files, various compressed formats

Creating RDD’s

• map

• flatmap

• filter

• distinct

• sample

• union, intersection, subtract, cartesian

Transforming RDD’s

• rdd = sc.parallelize([1, 2, 3, 4])

• rdd.map(lambda x: x*x)

• This yields 1, 4, 9, 16

Map() example

• Many RDD methods accept a function as a parameter

• rdd.map(lambda x: x*x)

• Is the same thing as

• def squareIt(x):
• return x*x

• rdd.map(squareIt)

• There, you now understand functional programming.

What’s that lambda thing?

• collect

• count

• countByValue

• take

• top

• reduce

• … and more ...

RDD Actions

• Nothing actually happens in your driver program until an action is
called!

Lazy Evaluation

Introducing MLLib

• Feature extraction
▫ Term Frequency / Inverse Document Frequency useful for search

• Basic statistics
▫ Chi-squared test, Pearson or Spearman correlation, min, max, mean, variance

• Linear regression, logistic regression
• Support Vector Machines
• Naïve Bayes classifier
• Decision trees
• K-Means clustering
• Principal component analysis, singular value decomposition
• Recommendations using Alternating Least Squares

Some MLLib Capabilities

• Vector (dense or sparse)

• LabeledPoint

• Rating

Special MLLib Data Types

TF-IDF

• Stands for Term Frequency and Inverse Document Frequency

• Important data for search – figures out what terms are most relevant for
a document

• Sounds fancy!

TF-IDF

• Term Frequency just measures how often a word occurs in a document
▫ A word that occurs frequently is probably important to that document’s

meaning

• Document Frequency is how often a word occurs in an entire set of
documents, i.e., all of Wikipedia or every web page
▫ This tells us about common words that just appear everywhere no matter

what the topic, like “a”, “the”, “and”, etc.

TF-IDF Explained

• So a measure of the relevancy of a word to a document might be:

𝑇𝑒𝑟𝑚 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

Or: Term Frequency * Inverse Document Frequency

That is, take how often the word appears in a document, over how often
it just appears everywhere. That gives you a measure of how important
and unique this word is for this document

TF-IDF Explained

• We actually use the log of the IDF, since word frequencies are
distributed exponentially. That gives us a better weighting of a words
overall popularity

• TF-IDF assumes a document is just a “bag of words”
▫ Parsing documents into a bag of words can be most of the work
▫ Words can be represented as a hash value (number) for efficiency
▫ What about synonyms? Various tenses? Abbreviations? Capitalizations?

Misspellings?

• Doing this at scale is the hard part
▫ That’s where Spark comes in!

TF-IDF In Practice

• A very simple search algorithm could be:
▫ Compute TF-IDF for every word in a corpus

▫ For a given search word, sort the documents by their TF-IDF score for that
word

▫ Display the results

Using TF-IDF

Let’s use TF-IDF on Wikipedia

Deploying models for real-time use

• Your external apps can’t just run a notebook!

• Separate your training from your predictions
▫ Train the model periodically offline

▫ Push the model – or its results – to a web service

▫ Your app calls the web service

How do I use my model in an app?

• Dump your trained classifier using sklearn.externals
▫ from sklearn.externals import joblib

joblib.dump(clf, 'model.joblib')

• Upload model.joblib to Google cloud storage, specifying the scikit-learn
framework

• Cloud ML Engine exposes a REST API that you can call to make
predictions in real-time

Example: Google Cloud ML

Exported
classifier

Cloud Storage
Cloud ML

Engine
ApplicationsREST

Example: AWS (recommender system)

Server logs

Client app

• Roll your own web service with Flask or another framework
▫ Then you have servers to provision and maintain :/

• Go all-in with a platform

Other approaches

A/B Tests

• A controlled experiment, usually in the context of a website

• You test the performance of some change to your website (the variant)
and measure conversion relative to your unchanged site (the control.)

What is an A/B test?

• Design changes

• UI flow

• Algorithmic changes

• Pricing changes

• You name it

What sorts of things can you test?

• Ideally choose what you are trying to influence
▫ Order amounts

▫ Profit

▫ Ad clicks

▫ Order quantity

• But attributing actions downstream from your change can be hard
▫ Especially if you’re running more than one experiment

How do you measure conversion

• Common mistake:
▫ Run a test for some small period of time that results in a few purchases to

analyze

▫ You take the mean order amount from A and B, and declare victory or
defeat

▫ But, there’s so much random variation in order amounts to begin with, that
your result was just based on chance.

▫ You then fool yourself into thinking some change to your website, which
could actually be harmful, has made tons of money.

Variance is your Enemy

• Sometimes you need to also look at conversion metrics with less
variance

• Order quantities vs. order dollar amounts, for example

Variance is your Enemy

T-Tests and P-Values

• So, how do we know if a result is likely to be “real” as opposed to just
random variation?

• T-tests and P-values

Determining significance

• A measure of the difference between the two sets expressed in units of
standard error

• The size of the difference relative to the variance in the data

• A high t value means there's probably a real difference between the two
sets

• Assumes a normal distribution of behavior
▫ This is a good assumption if you’re measuring revenue as conversion

▫ See also: Fisher’s exact test (for clickthrough rates), E-test (for transactions
per user) and chi-squared test (for product quantities purchased)

The T-Statistic

• Think of it as the probability of A and B satisfying the “null hypothesis”

• So, a low P-Value implies significance.

• It is the probability of an observation lying at an extreme t-value
assuming the null hypothesis

The P-Value

• Choose some threshold for “significance” before your experiment
▫ 1%? 5%?

• When your experiment is over:
▫ Measure your P-value

▫ If it’s less than your significance threshold, then you can reject the null
hypothesis
 If it’s a positive change, roll it out

 If it’s a negative change, discard it before you lose more money.

Using P-values

Let’s work through an example.

How Long Do I Run an Experiment?

• You have achieved significance (positive or negative)

• You no longer observe meaningful trends in your p-value
▫ That is, you don’t see any indication that your experiment will “converge”

on a result over time

• You reach some pre-established upper bound on time

How do I know when I’m done with an A/B test?

A/B Test Gotchas

• Even your low p-value score on a well-designed experiment does not
imply causation!
▫ It could still be random chance

▫ Other factors could be at play

▫ It’s your duty to ensure business owners understand this

Correlation does not imply causation

• Changes to a website will catch the attention of previous users who are
used to the way it used to be
▫ They might click on something simply because it is new

▫ But this attention won’t last forever

• Good idea to re-run experiments much later and validate their impact
▫ Often the “old” website will outperform the “new” one after awhile, simply

because it is a change

Novelty Effects

• An experiment run over a short period of time
may only be valid for that period of time
▫ Example: Consumer behavior near Christmas is

very different than other times of year

▫ An experiment run near Christmas may not
represent behavior during the rest of the year

Seasonal Effects

• Sometimes your random selection of customers for A or B isn’t really
random
▫ For example: assignment is based somehow on customer ID

▫ But customers with low ID’s are better customers than ones with high ID’s

• Run an A/A test periodically to check

• Audit your segment assignment algorithms

Selection Bias

• Are robots (both self-identified and malicious)
affecting your experiment?
▫ Good reason to measure conversion based on

something that requires spending real money

• More generally, are outliers skewing the result?

Data Pollution

• Often there are errors in how conversion is attributed to an experiment

• Using a widely used A/B test platform can help mitigate that risk
▫ If your is home-grown, it deserves auditing

• Watch for “gray areas”
▫ Are you counting purchases toward an experiment within some given time-

frame of exposure to it? Is that time too large?

▫ Could other changes downstream from the change you’re measuring affect
your results?

▫ Are you running multiple experiments at once?

Attribution Errors

deep learning pre-
requisites

sundog-education.com 275

gradient descent

sundog-education.com 276

autodiff

• Gradient descent requires knowledge of, well, the gradient from your
cost function (MSE)

• Mathematically we need the first partial derivatives of all the inputs
• This is hard and inefficient if you just throw calculus at the problem

• Reverse-mode autodiff to the rescue!
• Optimized for many inputs + few outputs (like a neuron)

• Computes all partial derivatives in # of outputs + 1 graph traversals

• Still fundamentally a calculus trick – it’s complicated but it works

• This is what Tensorflow uses

sundog-education.com 277

softmax

• Used for classification
• Given a score for each class

• It produces a probability of each class

• The class with the highest probability is the “answer” you get

x is a vector of input values
theta is a vector of weights

sundog-education.com 278

in review

• Gradient descent is an algorithm for minimizing error over multiple steps

• Autodiff is a calculus trick for finding the gradients in gradient descent

• Softmax is a function for choosing the most probable classification given
several input values

introducing artificial
neural networks

sundog-education.com 280

the biological
inspiration

• Neurons in your cerebral cortex are
connected via axons

• A neuron “fires” to the neurons it’s
connected to, when enough of its input
signals are activated.

• Very simple at the individual neuron
level – but layers of neurons connected
in this way can yield learning behavior.

• Billions of neurons, each with thousands
of connections, yields a mind

sundog-education.com 281

cortical columns

• Neurons in your cortex seem to be
arranged into many stacks, or “columns”
that process information in parallel

• “mini-columns” of around 100 neurons
are organized into larger “hyper-
columns”. There are 100 million mini-
columns in your cortex

• This is coincidentally similar to how GPU’s
work…

(credit: Marcel Oberlaender et al.)

sundog-education.com 282

the first artificial
neurons

• 1943!!

A B

C An artificial neuron “fires” if more than N
input connections are active.

Depending on the number of connections
from each input neuron, and whether a
connection activates or suppresses a neuron,
you can construct AND, OR, and NOT logical
constructs this way.

This example would implement C = A OR B if the threshold is 2 inputs being active.

sundog-education.com 283

the linear threshold
unit (ltu)

• 1957!

• Adds weights to the inputs;
output is given by a step
function

Weight 1 Weight 2

Σ

Input 1 Input 2

Sum up the products of
the inputs and their
weights
Output 1 if sum is >= 0

sundog-education.com 284

the perceptron

• A layer of LTU’s

• A perceptron can learn by
reinforcing weights that lead to
correct behavior during
training

• This too has a biological basis
(“cells that fire together, wire
together”)

Σ ΣΣ

Weight 1 Weight 2
Bias

Neuron
(1.0)

Input 1 Input 2

sundog-education.com 285

multi-layer
perceptrons

• Addition of “hidden layers”

• This is a Deep Neural
Network

• Training them is trickier –
but we’ll talk about that.

Σ ΣΣ

Weight 1 Weight 2
Bias

Neuron
(1.0)

Input 1 Input 2

Σ

Σ ΣΣ

sundog-education.com 286

a modern deep
neural network

• Replace step activation
function with something
better

• Apply softmax to the
output

• Training using gradient
descent

Σ ΣΣ

Weight 1 Weight 2
Bias

Neuron
(1.0)

Input 1 Input 2

Σ

Σ ΣΣ

softmax

Bias
Neuron

(1.0)

let’s play

deep learning

sundog-education.com 289

backpropagation

• How do you train a MLP’s weights? How does it
learn?

• Backpropagation… or more specifically:
Gradient Descent using reverse-mode autodiff!

• For each training step:
• Compute the output error
• Compute how much each neuron in the previous

hidden layer contributed
• Back-propagate that error in a reverse pass
• Tweak weights to reduce the error using gradient

descent

sundog-education.com 290

activation functions
(aka rectifier)

• Step functions don’t work with gradient
descent – there is no gradient!
• Mathematically, they have no useful derivative.

• Alternatives:
• Logistic function
• Hyperbolic tangent function
• Exponential linear unit (ELU)
• ReLU function (Rectified Linear Unit)

• ReLU is common. Fast to compute and works
well.
• Also: “Leaky ReLU”, “Noisy ReLU”
• ELU can sometimes lead to faster learning

though.
ReLU function

sundog-education.com 291

optimization
functions

• There are faster (as in faster learning) optimizers than gradient descent
• Momentum Optimization

• Introduces a momentum term to the descent, so it slows down as things start to flatten and speeds up as the
slope is steep

• Nesterov Accelerated Gradient
• A small tweak on momentum optimization – computes momentum based on the gradient slightly ahead of you,

not where you are
• RMSProp

• Adaptive learning rate to help point toward the minimum
• Adam

• Adaptive moment estimation – momentum + RMSProp combined
• Popular choice today, easy to use

sundog-education.com 292

avoiding overfitting

• With thousands of weights to tune, overfitting is a
problem

• Early stopping (when performance starts dropping)

• Regularization terms added to cost function during
training

• Dropout – ignore say 50% of all neurons randomly at
each training step
• Works surprisingly well!

• Forces your model to spread out its learning

sundog-education.com 293

tuning your topology

• Trial & error is one way
• Evaluate a smaller network with less neurons in

the hidden layers
• Evaluate a larger network with more layers

• Try reducing the size of each layer as you progress –
form a funnel

• More layers can yield faster learning

• Or just use more layers and neurons than you
need, and don’t care because you use early
stopping.

• Use “model zoos”

tensorflow

sundog-education.com 295

why tensorflow?

• It’s not specifically for neural networks– it’s more generally an
architecture for executing a graph of numerical operations

• Tensorflow can optimize the processing of that graph, and distribute its
processing across a network
• Sounds a lot like Apache Spark, eh?

• It can also distribute work across GPU’s!
• Can handle massive scale – it was made by Google

• Runs on about anything

• Highly efficient C++ code with easy to use Python API’s

sundog-education.com 296

tensorflow basics

• Install with conda install tensorflow
or conda install tensorflow-gpu

• A tensor is just a fancy name for an
array or matrix of values

• To use Tensorflow, you:
• Construct a graph to compute your

tensors

• Initialize your variables

• Execute that graph – nothing actually
happens until then

import tensorflow as tf

a = tf.Variable(1, name="a")

b = tf.Variable(2, name="b")

f = a + b

tf.print(f)

World’s simplest Tensorflow app:

sundog-education.com 297

creating a neural network
with tensorflow

• Mathematical insights:
• All those interconnected arrows multiplying

weights can be thought of as a big matrix
multiplication

• The bias term can just be added onto the result
of that matrix multiplication

• So in Tensorflow, we can define a layer of a
neural network as:
output =
tf.matmul(previous_layer,
layer_weights) + layer_biases

• By using Tensorflow directly we’re kinda
doing this the “hard way.”

Σ ΣΣ

Weight
1

Weight
2

Bias
Neuron

(1.0)

Input 1 Input 2

Σ

Σ ΣΣ

softmax

Bias
Neuro

n
(1.0)

sundog-education.com 298

creating a neural network
with tensorflow

• Load up our training and testing data

• Construct a graph describing our neural network

• Associate an optimizer (ie gradient descent) to
the network

• Run the optimizer with your training data

• Evaluate your trained network with your testing
data

sundog-education.com 299

make sure your features are
normalized

• Neural networks usually work best if your input data is normalized.
• That is, 0 mean and unit variance

• The real goal is that every input feature is comparable in terms of magnitude

• scikit_learn’s StandardScaler can do this for you

• Many data sets are normalized to begin with – such as the one we’re
about to use.

keras

sundog-education.com 301

why keras?

• Easy and fast prototyping
• Runs on top of TensorFlow (or CNTK,

or Theano)

• scikit_learn integration

• Less to think about – which often
yields better results without even
trying

• This is really important! The faster
you can experiment, the better your
results.

sundog-education.com 302

let’s dive in

• MNIST is an example of multi-class classification.

Example: multi-class classification

model = Sequential()

model.add(Dense(64, activation='relu', input_dim=20))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9,

nesterov=True)
model.compile(loss='categorical_crossentropy',

optimizer=sgd, metrics=['accuracy'])

sundog-education.com 304

example: binary
classification

model = Sequential()
model.add(Dense(64, input_dim=20,
activation='relu')) model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop', metrics=['accuracy'])

sundog-education.com 305

integrating keras with
scikit-learn

from scikeras.wrappersimport KerasClassifier

def create_model():

 model = Sequential()

 model.add(Dense(6, input_dim=4, kernel_initializer='normal', activation='relu'))

 model.add(Dense(4, kernel_initializer='normal', activation='relu'))

 model.add(Dense(1, kernel_initializer='normal', activation='sigmoid'))

 model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])

 return model

estimator = KerasClassifier(model=create_model, nb_epoch=100, verbose=0)

cv_scores = cross_val_score(estimator, features, labels, cv=10)

print(cv_scores.mean())

sundog-education.com 306

let’s try it out

convolutional neural
networks

sundog-education.com 308

cnn’s: what are they
for?

• When you have data that doesn’t neatly
align into columns
• Images that you want to find features within
• Machine translation
• Sentence classification
• Sentiment analysis

• They can find features that aren’t in a
specific spot
• Like a stop sign in a picture
• Or words within a sentence

• They are “feature-location invariant”

sundog-education.com 309

cnn’s: how do they
work?

• Inspired by the biology of the visual cortex
• Local receptive fields are groups of neurons that only respond to a part of what

your eyes see (subsampling)

• They overlap each other to cover the entire visual field (convolutions)

• They feed into higher layers that identify increasingly complex images
• Some receptive fields identify horizontal lines, lines at different angles, etc. (filters)

• These would feed into a layer that identifies shapes

• Which might feed into a layer that identifies objects

• For color images, extra layers for red, green, and blue

sundog-education.com 310

how do we “know”
that’s a stop sign?

• Individual local receptive fields scan the image
looking for edges, and pick up the edges of the
stop sign in a layer

• Those edges in turn get picked up by a higher level
convolution that identifies the stop sign’s shape
(and letters, too)

• This shape then gets matched against your
pattern of what a stop sign looks like, also using
the strong red signal coming from your red layers

• That information keeps getting processed upward
until your foot hits the brake!

• A CNN works the same way

sundog-education.com 311

cnn’s with keras

• Source data must be of appropriate dimensions
• ie width x length x color channels

• Conv2D layer type does the actual convolution on a 2D image
• Conv1D and Conv3D also available – doesn’t have to be image data

• MaxPooling2D layers can be used to reduce a 2D layer down by taking
the maximum value in a given block

• Flatten layers will convert the 2D layer to a 1D layer for passing into a flat
hidden layer of neurons

• Typical usage:
• Conv2D -> MaxPooling2D -> Dropout -> Flatten -> Dense -> Dropout -> Softmax

sundog-education.com 312

cnn’s are hard

• Very resource-intensive (CPU, GPU, and
RAM)

• Lots of hyperparameters
• Kernel sizes, many layers with different

numbers of units, amount of pooling… in
addition to the usual stuff like number of
layers, choice of optimizer

• Getting the training data is often the
hardest part! (As well as storing and
accessing it)

sundog-education.com 313

specialized cnn
architectures

• Defines specific arrangement of layers, padding, and hyperparameters

• LeNet-5
• Good for handwriting recognition

• AlexNet
• Image classification, deeper than LeNet

• GoogLeNet
• Even deeper, but with better performance
• Introduces inception modules (groups of convolution layers)

• ResNet (Residual Network)
• Even deeper – maintains performance via skip connections.

sundog-education.com 314

let’s try it out

recurrent neural
networks

sundog-education.com 316

rnn’s: what are they
for?

• Time-series data
• When you want to predict future behavior based on

past behavior
• Web logs, sensor logs, stock trades
• Where to drive your self-driving car based on past

trajectories

• Data that consists of sequences of arbitrary
length
• Machine translation
• Image captions
• Machine-generated music

sundog-education.com 317

a recurrent neuron

Σ

sundog-education.com 318

another way to look
at it

Σ Σ Σ

Time

A “Memory Cell”

sundog-education.com 319

a layer of recurrent
neurons

Σ Σ Σ Σ

sundog-education.com 320

rnn topologies

• Sequence to sequence
• i.e., predict stock prices based on

series of historical data

• Sequence to vector
• i.e., words in a sentence to

sentiment

• Vector to sequence
• i.e., create captions from an image

• Encoder -> Decoder
• Sequence -> vector -> sequence
• i.e., machine translation

sundog-education.com 321

training rnn’s

• Backpropagation through time
• Just like backpropagation on MLP’s, but applied to each time step.

• All those time steps add up fast
• Ends up looking like a really, really deep neural network.

• Can limit backpropagation to a limited number of time steps (truncated
backpropagation through time)

sundog-education.com 322

training rnn’s

• State from earlier time steps get diluted over
time
• This can be a problem, for example when learning

sentence structures

• LSTM Cell
• Long Short-Term Memory Cell

• Maintains separate short-term and long-term
states

• GRU Cell
• Gated Recurrent Unit

• Simplified LSTM Cell that performs about as well

sundog-education.com 323

training rnn’s

• It’s really hard
• Very sensitive to topologies, choice of

hyperparameters

• Very resource intensive

• A wrong choice can lead to a RNN that
doesn’t converge at all.

sundog-education.com 324

let’s run an example

Transfer Learning

• For many common problems, you can import
pre-trained models and just use them.
▫ Image classification (ResNet, Inception,

MobileNet, Oxford VGG)

▫ NLP (word2vec, GloVe)

• Use them as-is, or tune them for your
application

• Model Zoos
▫ Caffe Model Zoo

Re-using trained models

Tuning Neural Networks

Learning Rate
• Neural networks are trained by

gradient descent (or similar
means)

• We start at some random
point, and sample different
solutions (weights) seeking to
minimize some cost function,
over many epochs

• How far apart these samples
are is the learning rate

Effect of learning rate
• Too high a learning rate means

you might overshoot the
optimal solution!

• Too small a learning rate will
take too long to find the
optimal solution

• Learning rate is an example of a
hyperparameter

Batch Size
• How many training samples are

used within each epoch
• Somewhat counter-intuitively:
▫ Smaller batch sizes can work their

way out of “local minima” more
easily

▫ Batch sizes that are too large can
end up getting stuck in the wrong
solution

▫ Random shuffling at each epoch
can make this look like very
inconsistent results from run to
run

To Recap

• Small batch sizes tend to not get stuck in local minima

• Large batch sizes can converge on the wrong solution at random

• Large learning rates can overshoot the correct solution

• Small learning rates increase training time

Neural Network Regularization Techniques

What is regularization?
• Preventing overfitting
▫ Models that are good at making predictions

on the data they were trained on, but not on
new data it hasn’t seen before

▫ Overfitted models have learned patterns in
the training data that don’t generalize to the
real world

▫ Often seen as high accuracy on training data
set, but lower accuracy on test or evaluation
data set.
 When training and evaluating a model, we use

training, evaluation, and testing data sets.

• Regularization techniques are intended to
prevent overfitting.

Chabacano [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]

Too many layers? Too many neurons?

Σ ΣΣ

Weight
1

Weight
2

Bias
Neuron

(1.0)

Input 1 Input 2

Σ

Σ ΣΣ

softmax

Bias
Neuron

(1.0)

Σ ΣΣ

Weight
1

Weight
2

Bias
Neuron

(1.0)

Input 1 Input 2

Σ

Σ ΣΣ

softmax

Bias
Neuron

(1.0)

Dropout

XX

Early Stopping

Generative Modeling

Variational Auto-Encoders

• An encoder learns how to reduce input down
to its latent features (using convolution, like a
CNN)

• A decoder learns how to reconstruct data from
those latent features (using transpose
convolution!)

• The system as a whole is trained such that the
original input fed into the encoder is as close
as possible to the reconstructed data
generated by the decoder

• Once trained, we can discard the encoder and
just use the decoder to create synthetic data!

• Applications: dimensionality reduction,
compression, search, denoising, colorization

Auto-Encoders

• The decoder uses Conv2DTranspose layers to
reconstruct images from their latent features

• It learns weights used to create new image
pixels from lower-dimensional representations

▫ Well, it can be used on more than just images

• Stride of 2 is often used

• Can use max-unpooling (inverse of max-
pooling)

• Think of the decoder as a CNN that works
backwards.

Transpose convolution

• In a VAE, the latent vectors are probability
distributions (like this)

• Represented by mean and variance of
Gaussian normal distributions

• X -> p(z/X) -> z -> p(X/z)

• This is the inspiration of generative adversarial
networks (GAN’s) – we’re getting there

Variational Auto-Encoders

• A problem with the VAE idea is the probability
distribution (z) can’t be differentiated

• And we need derivatives for backpropagation
to work…

• The “trick” is to convert the random sampling
from z to a deterministic form:

• Z = mu + sigma * epsilon

• Here, epsilon is the random variable (from a
standard normal distribution)

• That pushes the random step out of the
network as an input, giving us a connected
graph.

The “reparameterization trick”

• How do we measure the distance between
two probability distributions of the original
and reconstructed data?

• KL Divergence is used

▫ Sometimes called “earth-mover distance”

• KL Divergence = ∑ p(x) * log(p(x)/q(x))

• Equivalent to Cross Entropy (p, q) - Entropy (p)

▫ Sometimes called “relative entropy”

• We use it as a loss function

▫ kl_loss = -0.5 * (1 + z_log_var -
tf.square(z_mean) - tf.exp(z_log_var))

Kullback-Leibler Divergence

Generative Adversarial Networks (GAN’s)

• Yes, it’s the tech behind
“deepfakes” and all those viral
face-swapping and aging apps

• But researchers had nobler
intentions…
▫ Generating synthetic datasets to

remove private info
▫ Anomaly detection
▫ Self-driving
▫ Art, music

Generative Adversarial Networks

Datasciencearabic1, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-
sa/4.0>, via Wikimedia Commons

This person doesn’t exist.

• Learns the actual distribution of latent vectors
▫ Doesn’t assume Gaussian normal distributions

like VAE’s

• The generator maps random noise(!) to a
probability distribution

• The discriminator learns to identify real images
from generated (fake) images

• The generator is trying to fool the discriminator
into thinking its images are real

• The discriminator is trying to catch the generator
• The generator and discriminator are adversarial,

hence the name…
• Once the discriminator can’t tell the difference

anymore, we’re done (in theory)

GAN’s

• That’s the adversarial loss function.

• We call it a “min-max game”

▫ The generator is minimizing its loss in creating realistic images

▫ The discriminator, at the same time, is maximizing its ability to detect fakes

• It is complicated and delicate.

▫ Training is very unstable; lots of trial & error / hyperparameter tuning

▫ Mode collapse

▫ Vanishing gradients

Fancy math

The Transformer Architecture (GPT, ChatGPT)
And how self-attention works its magic

The Evolution of Transformers
• RNN’s, LSTMs

• Introduced a feedback loop for
propagating information forward

• Useful for modeling sequential
things
▫ Time series

▫ Language! A sequence of words
(or tokens)

The Evolution of Transformers
• Machine translation
• Encoder / Decoder

architecture
• Encoders and Decoders

are RNN’s
• But, the one vector tying

them together creates an
information bottleneck
▫ Information from the start

of the sequence may be
lost

“Attention is all you need”
• A hidden state for

each step (token)
• Deals better with

differences in word
order

• Starts to have a
concept of
relationships
between words

• But RNN’s are still
sequential in nature,
can’t parallelize it

Transformers • Ditch RNN’s for feed-forward neural networks (FFNN’s)
• Use “self-attention”
• This makes it parallelizable (so can train on much more

data)

Self-Attention (in more depth)
• Each encoder or decoder has a

list of embeddings (vectors) for
each token

• Self-attention produces a
weighted average of all token
embeddings. The magic is in
computing the attention
weights.

• This results in tokens being tied
to other tokens that are
important for its context, and a
new embedding that captures its
“meaning” in context.

Self-Attention (in more depth)
• Three matrices of weights

are learned through back-
propagation
▫ Query (Wq)
▫ Key (Wk)
▫ Value (Wv)

• Every token gets a query
(q), key (k), and value (v)
vector by multiplying its
embedding against these
matrices

a good novel

Wq

Wk

Wv
x

= v v v

q

k kk

q q

Self-Attention (in more depth)
• Compute a score for

each token by
multiplying (dot
product) its query with
each key

• “Scaled dot-product
attention”

• Dot product is just one
similarity function we
can use.

• In practice, softmax is
then applied to the
scores to normalize
them.

a good novel

q

k kk

q q

20% 50% 30%

x x x

scores

softmax

Masked Self-Attention
• A mask can be applied to

prevent tokens from
“peeking” into future tokens
(words)

• GPT does this, but BERT does
something else (masked
language modeling)

• In this example, “good”
wouldn’t be affected by
“novel”, but “novel” could by
affected by “good”.

• This is just the concept…
actual implementation details
will vary.

a good novel

q

k kk

q q

20% 50% 30%

x x x

scores

softmax

masks

Self-Attention (in more depth)

• Now we sum.

• Multiply values by
scores, and sum them
up.

a good novel

v v v

20% 50% 30%Scores (after
masking,
softmax)

z

z z zproducts

x x x

sums

+ + +

Self-Attention (in more depth)
• Repeat entire process for

each token (in parallel)

• Now we have our
updated embeddings for
each token!

• These weight each token
embedding as it’s passed
into the feed-forward
neural network.

a good novel

z z z
Updated
embeddings

Self-attention

FFNN FFNN FFNN

Multi-Headed Self-Attention

• The q, k, and v vectors are
reshaped into matrices

• Then each row of the matrix
can be processed in parallel

• The number of rows are the
number of “heads”

q

q

k

k

v

v

Applications of Transformers
• Chat!

• Question answering

• Text classification
▫ i.e., sentiment analysis

• Named entity recognition

• Summarization

• Translation

• Code generation

• Text generation
▫ i.e., automated customer service

From Transformers to GPT
Generative Pre-Trained Transformers

GPT

• Generative Pre-Trained Transformer (GPT-2 in this example)
• Decoder-only – stacks of decoder blocks

▫ Each consisting of a masked self-attention layer, and a feed-forward
neural network

▫ As an aside, BERT consists only of encoders. T5 is an example of a
model that uses both encoders and decoders.

• No concept of input, all it does is generate the next token over and
over
▫ Using attention to maintain relationships to previous words / tokens
▫ You “prompt” it with the tokens of your question or whatever
▫ It then keeps on generating given the previous tokens

• Getting rid of the idea of inputs and outputs is what allows us to train
it on unlabeled piles of text
▫ It’s “learning a language” rather than optimizing for some specific task

• Hundreds of billions of parameters

GPT: Input processing
• Tokenization, token encoding
• Token embedding

▫ Captures semantic relationships between
tokens, token similarities

• Positional encoding
▫ Captures the position of the token in the

input relative to other nearby tokens
▫ Uses an interleaved sinusoidal function so

it works on any length

GPT: Output processing
• The stack of decoders outputs a

vector at the end

• Multiply this with the token
embeddings

• This gives you probabilities (logits) of
each token being the right next
token (word) in the sequence

• You can randomize things a bit here
(“temperature”) instead of always
picking the highest probability

Transfer Learning with Transformers
• Add additional training data through the

whole thing
• Freeze specific layers, re-train others

▫ Train a new tokenizer to learn a new
language

• Add a layer on top of the pre-trained
model
▫ Just a few may be all that’s needed!
▫ Provide examples of prompts and desired

completions
 “How’s the weather?” -> “What’s it to

you, bucko?”
▫ Adapt it to classification or other tasks

 “Wow, I love this course!” -> “Positive”

From GPT to ChatGPT and GPT-4
How video games, robotics, and humans came
together to create an AI

From GPT to ChatGPT: Deep
Reinforcement Learning

• Reinforcement learning with a neural network
• Developed by training on old Atari video

games! Only inputs are the pixels of the game.
▫ Well, difference frames technically, so we can

capture motion.
• A Policy Network learns how to control the

game
▫ For example, should I move up or down in Pong

given a state?
▫ The “reward” is if the ball eventually gets past

the opponent or not
▫ Given the number of pixels and the number of

frames before a round is won, this is crazy-hard.

Policy Gradients
• Can’t train this like a typical neural network, since we don’t have a label to back-propagate right away

▫ A given motion may not result in a win until some time in the future
• Instead, each action has a gradient associated with it (just like supervised learning)
• After we win or lose, we go back and update those gradients as positive (+1) for an eventual win and

negative (-1) for an eventual loss.

Pong AI with Policy
Gradients

Andrej Karpathy
https://www.youtube.com/watch?v=YOW8m2YGtRg

Proximal Policy Optimization (PPO)
• Policy Gradients have issues
▫ Very sensitive to step size
▫ Poor efficiency

• Enter PPO
▫ Introduces Kullback-Leibler

divergence into the algorithm
 This is just a distance between two

probability distributions

▫ New variants simplify out the KL
penalty

▫ Compatible with SGD
▫ Easier to tune

OpenAI

What do video games and robots have to do with
ChatGPT?

• ChatGPT builds on top of GPT-
n with Reinforcement
Learning from Human
Feedback (RLHF)

• GPT is fine-tuned using
Proximal Policy Optimization
(PPO) and Deep RL

From GPT to ChatGPT: Step 1
• Initial model is trained by humans

providing conversations where they play
both sides
▫ The model did suggest responses to them
▫ Earlier training data from InstructGPT also

used
• This is supervised fine-tuning
• The result is a trained, supervised policy

▫ …which will later be optimized with PPO
• ChatGPT’s secret is that it’s built by

supervised training from a large army of
humans

From GPT to ChatGPT: Step 2
• Create a reward model for

reinforcement learning.
▫ It’s not as simple as “did I win this

game of pong”… how do we know
which responses are best?

• A prompt, and several model
outputs, are selected

• A human labeler ranks the
outputs from best to worst.

• This data trains a reward model.
• In GPT-4, the reward model is also

used to punish “harmful outputs.”

From GPT to ChatGPT: Step 3

• The supervised policy from step
1 is optimized using our reward
model from step 2

• Proximal Policy Optimization
(PPO) is used.

• Several iterations are
performed

ChatGPT Moderation
• Another layer that prevents

content that is
▫ Sexual
▫ Hateful
▫ Violent
▫ Promotes self-harm
▫ Harassment

• Although it’s complicated, it
fundamentally relies on human
labelers
▫ …and that’s not a good job.
▫ https://arxiv.org/abs/2208.03274

…and that’s how you build an AI.

…the moderation layer kicked in here, how disappointing.

The OpenAI API

• Just an API into ChatGPT
• A chat is a series of messages

▫ Each message has a role (system, user, or assistant)
and content.

• Other parameters:
▫ Model (gpt-3.5-turbo, gpt-4, etc.)
▫ Temperature or top_p (how random the responses

are)
▫ N (number of choices to generate)
▫ Stream (whether to stream out the output one word

at a time)
▫ Stop (Stop sequences)
▫ Max_tokens
▫ Presence_penalty (penalize or encourage tokens that

already appeared)
▫ Logit_bias (map to directly affect the probability of

certain tokens)

Chat Completions

from openai import OpenAI

client = OpenAI()

client.chat.completions.create(

 model="gpt-3.5-turbo",

 messages=[

 {"role": "system", "content": "You are a

helpful assistant."},

 {"role": "user", "content": "Who won the

world series in 2020?"},

 {"role": "assistant", "content": "The Los

Angeles Dodgers won the World Series in 2020."},

 {"role": "user", "content": "Where was it

played?"}

]

)

• Chat completions also have a tools parameter
that contains functions

• You provide a description of what this function
does, and what its parameters are.

• ChatGPT can then embed function calls as part
of its response!

• This allows you to integrate your own services
into the response.

• One way to implement “retrieval augmented
generation” (RAG)

• Example: if the user asks for the weather, call
your weather API to get the current weather
conditions.

Tools and Functions

• Create image

• Create image edit

▫ Provide a mask of a transparent area in an
image, and it will fill it in

• Create image variation

▫ Provide an image, and it makes a slightly
different one.

Image generation

• Converts text or code into vectors (of very
high dimension)
▫ Text or code that is similar to each other will be

close to each other in this vector space
• Text similarity

▫ Useful for clustering, data viz, classification
▫ Dot product of two vectors gives you a

“similarity score” (cosine similarity)
▫ text-similarity-davinci-

• Text search
▫ Embed documents and query
▫ Use cosine similarity to find best match
▫ text-search-davinci-{doc, query}-

• Code search
▫ Same deal, but optimized for code
▫ code-search-babbage-{doc, query}-

Embeddings The starship Enterprise

Spaceballs

The Orville

potato

rhubarb

• Legacy API no longer being updated
• You give it a prompt, and it completes it
• Just one prompt, as opposed to a list of messages in the Chat Completions API.
• Can do the same thing in Chat Completions by just passing in a single message.
• Temporary caveat in 2023: completions supports older models than chat

completions, and only those older models can be fine-tuned at this time.

Completions (now deprecated)

• Adapt an existing large language model to your specific
use case!

• Additional training using your own data – potentially lots
of it
▫ Eliminates need to build up a big conversation to get

the results you want (“prompt engineering” / “prompt
design”

▫ Saves on tokens in the long run
• Your fine-tuned model can be used like any other
• You can fine-tune a fine-tuned model, making it “smarter”

over time
• Applications:

▫ Chatbot with a certain personality or style, or with a
certain objective (i.e., customer support, writing ads)

▫ Training with data more recent than what the LLM had
▫ Training with proprietary data (i.e., your past emails or

messages, customer support transcripts)
▫ Specific applications (classification, evaluating truth)

Fine-tunes

• 1. Prepare your dataset
▫ jsonl format, each line is a prompt and an ideal completion.
▫ Prompts should end with some sort of separator (like \n\n###\n\n)
▫ Completions should begin with whitespace and end with a fixed stop sequence

(###, END, whatever – as long as it doesn’t appear in the completion.)
▫ CLI data preparation tool can validate data (and import from csv, excel, json)
▫ You will be charged by the token in this training data.

• 2. Create the fine-tuned model
▫ CLI interface where you just pass in the training data and the model to tune
▫ This can take hours!

• 3. Use the model!
▫ CLI, API, playground

Fine-tunes (legacy)

• Same idea, but input data is in chat
completions API format.

• Newer models (GPT-3.5-turbo, GPT
4 coming soon)

• The fine tuned model can be used in
chat completions, instead of
completions.

• Can provide both training and
validation files (use File API to
upload them, and refer to their ID’s)

• Let’s look at an example for
specifics…

Fine-tuning (newer API)

{"messages": [
 {"role": "system", "content": "Data is an android
in the TV series Star Trek: The Next Generation."},
 {"role": "user", "content": "PICARD: You will
agree, Data, that Starfleet's instructions are
difficult?"},
 {"role": "assistant", "content": "DATA: Difficult ...
how so? Simply solve the mystery of Farpoint
Station."}]
}

• You give it text

• It tells you if it violates OpenAI’s usage
policies, and how.

• Detects hate speech, violence, self-harm, and
sexual content.

• Returns specific categories it violates (if any)
along with the scores for each.

Moderation

• You pass in an audio file
▫ mp3, mp4, mpeg, mpga, m4a, wav, or

webm
• It gives you a transcript.
• It’s that simple.
• You can include a prompt to guide the style
• Temperature may be specified to adjust

determinism
▫ Default of 0 uses log probability to try to set

it automatically

• Output (response_format) may be json, text,
srt, verbose_json, or vtt

• Can also translate foreign speech into English

Audio (speech to text)

Or, “cheat to win”

Retrieval Augmented Generation (RAG)

• Like an open-book exam for LLM’s

• You query some external database
for the answers instead of relying
on the LLM

• Then, work those answers into the
prompt for the LLM to work with
▫ Or, use tools and functions to

incorporate the search into the LLM
in a slightly more principled way

Retrieval Augmented Generation (RAG)

What did the President say in his
speech yesterday?

(vector?)
Database

What did the President say in his
speech yesterday? Consider the text
of the following news article in your

response: Last night, President…

• Faster & cheaper way to
incorporate new or proprietary
information into “GenAI” vs fine-
tuning

• Updating info is just a matter of
updating a database

• Can prevent “hallucinations”
when you ask the model about
something it wasn’t trained on

• If your boss wants “AI search”,
this is an easy way to deliver it.

• Technically you aren’t “training”
a model with this data

RAG: Pros and Cons

• You have made the world’s
most overcomplicated search
engine

• Very sensitive to the prompt
templates you use to
incorporate your data

• Non-deterministic
• It can still hallucinate
• Very sensitive to the

relevancy of the information
you retrieve

RAG: Example Approach (winning at Jeopardy!)

“In 1986, Mexico scored
as the first country to
host this international

sports competition
twice.

Query
Encoder

Database of
Jeopardy!
questions

Document

Document

Document

Document

Generator

The
World
Cup

Retriever

Basically, we are handing the generator potential answers from an external database.

• You could just use whatever database is appropriate for
the type of data you are retrieving
▫ Graph database (i.e., Neo4j) for retrieving product

recommendations or relationships between items
▫ Elasticsearch or something for traditional text search

(TF/IDF)
▫ The functions / tools API can be used to try and get GPT to

provide structured queries and extract info from the
original query
 “RAG with a Graph database” in the OpenAI Cookbook is

one example
 https://cookbook.openai.com/examples/rag_with_graph_

db
• But for some reason, most examples you find of RAG

use a Vector database

Choosing a Database for RAG
Q: 'Which pink items are suitable

for children?’

{

 "color": "pink",

 "age_group": "children"

}

Q: 'Help me find gardening gear

that is waterproof’

{

 "category": "gardening gear",

 "characteristic": "waterproof“

}

Q: 'I'm looking for a bench with

dimensions 100x50 for my living

room’

{

 "measurement": "100x50",

 "category": "home decoration"

}

https://cookbook.openai.com/examples/rag_with_graph_db
https://cookbook.openai.com/examples/rag_with_graph_db

• An embedding is just a big vector
associated with your data

• Think of it as a point in multi-
dimensional space (typically 100’s or
thousands of dimensions)

• Embeddings are computed such that
items that are similar to each other are
close to each other in that space

• We can use OpenAI’s embeddings API
(for example) to compute them en
masse

Review: embeddings The starship
Enterprise

Spaceballs

The
Orville

potato

rhubarb

• …a vector database!
• It just stores your data alongside their computed embedding

vectors
• Leverages the embeddings you might already have for ML
• Retrieval looks like this:

▫ Compute an embedding vector for the thing you want to search
for

▫ Query the vector database for the top items close to that vector
▫ You get back the top-N most similar things (K-Nearest Neighbor)
▫ “Vector search”

• Examples of vector databases
▫ Coercing existing databases to do vector search

 Elasticsearch, SQL, Neptune, Redis, MongoDB, Cassandra
▫ Purpose-built vector DB’s

 Pinecone, Weaviate (commercial)
 Chroma, Marqo, Vespa, Qdrant, LanceDB, Milvus, vectordb (open

source)

Embeddings are vectors, so store them in…
The starship
Enterprise

Spaceballs

The
Orville

potato

rhubarb

RAG Example with a Vector Database: Making Data from
Star Trek, by Cheating.

Data, tell me
about your
daughter Lal.

Compute
embedding

vector

Vectordb of
Data’s script

lines

Similar lines

You are Commander Data
from Star Trek. How might
Data respond to the
question “Data, tell me
about your daughter Lal”,
taking into account the
following related lines from
Data: …

Prompt + query + relevant data

Let’s go actually build that now.

The Ethics of Deep Learning

• Accuracy doesn’t tell the whole story
• Type 1: False positive
▫ Unnecessary surgery
▫ Slam on the brakes for no reason

• Type 2: False negative
▫ Untreated conditions
▫ You crash into the car in front of you

• Think about the ramifications of different types of errors from your
model, tune it accordingly

Types of errors

• Just because your model isn’t human
doesn’t mean it’s inherently fair

• Example: train a model on what sort
of job applicants get hired, use it to
screen resumes
▫ Past biases toward gender / age /

race will be reflected in your model,
because it was reflected in the data
you trained the model with.

Hidden biases

• Don’t oversell the capabilities of an algorithm in your excitement

• Example: medical diagnostics that are almost, but not quite, as good as
a human doctor

• Another example: self-driving cars that can kill people

Is it really better than a human?

• Gather ‘round the fire while Uncle Frank tells you a story.

Unintended applications of your research

Learning More about Deep Learning

Learning more

Final Project

• Predict if a mass detected in a mammogram is benign or malignant,
using the best supervised machine learning model you can find.

Your Assignment

	Slide 1: Getting Set Up
	Slide 2: Installation Checklist
	Slide 3: Python Basics
	Slide 4: Let’s just jump right into some code.
	Slide 5: Types of Data
	Slide 6: Many Flavors of Data
	Slide 7: Major Types of Data
	Slide 8: Numerical
	Slide 9: Categorical
	Slide 10: Ordinal
	Slide 11: Quiz time!
	Slide 12: Mean, Median, and Mode
	Slide 13: Mean
	Slide 14: Median
	Slide 15: Median
	Slide 16: Mode
	Slide 17: Standard Deviation and Variance
	Slide 18: An example of a histogram
	Slide 19: Variance measures how “spread-out” the data is.
	Slide 20: Standard Deviation sigma is just the square root of the variance.
	Slide 21: Population vs. Sample
	Slide 22: Fancy Math
	Slide 23: Let’s look at another example.
	Slide 24: Probability Density Functions
	Slide 25: Example: a “normal distribution”
	Slide 26: Gives you the probability of a data point falling within some given range of a given value.
	Slide 27: Probability Mass Function
	Slide 28: Let’s play with some examples.
	Slide 29: Percentiles and Moments
	Slide 30: Percentiles
	Slide 31: Percentiles in a normal distribution
	Slide 32: Let’s look at some examples.
	Slide 33: Moments
	Slide 34: The first moment is the mean.
	Slide 35: The second moment is the variance.
	Slide 36: Yes, it’s just that simple.
	Slide 37: The third moment is “skew” (gamma)
	Slide 38: The fourth moment is “kurtosis”
	Slide 39: Let’s compute the 4 moments in Python.
	Slide 40: Covariance and Correlation
	Slide 41: Covariance
	Slide 42: Measuring covariance
	Slide 43: Interpreting covariance is hard
	Slide 44: That’s where correlation comes in!
	Slide 45: Remember: correlation does not imply causation!
	Slide 46: Let’s play with some data.
	Slide 47: Conditional Probability
	Slide 48: Conditional Probability
	Slide 49: For example
	Slide 50: Let’s do another example using Python.
	Slide 51: Bayes’ Theorem
	Slide 52: Bayes’ Theorem
	Slide 53: Bayes’ Theorem to the rescue
	Slide 54: Bayes’ Theorem to the rescue
	Slide 55: Linear Regression
	Slide 56: Linear Regression
	Slide 57: Linear Regression: How does it work?
	Slide 58: Linear Regression: How does it work?
	Slide 59: More than one way to do it
	Slide 60: Measuring error with r-squared
	Slide 61: Computing r-squared
	Slide 62: Interpreting r-squared
	Slide 63: Let’s play with an example.
	Slide 64: Polynomial Regression
	Slide 65: Why limit ourselves to straight lines?
	Slide 66: Beware overfitting
	Slide 67: Let’s play with an example
	Slide 68: Multiple Regression
	Slide 69: Multiple Regression
	Slide 70: Still uses least squares
	Slide 71: Let’s dive into an example.
	Slide 72: Multi-Level Models
	Slide 73: Multi-Level Models
	Slide 74: Modeling multiple levels
	Slide 75: Doing this is hard.
	Slide 76: Supervised and Unsupervised Machine Learning
	Slide 77: What is machine learning?
	Slide 78: Unsupervised Learning
	Slide 79: Unsupervised Learning
	Slide 80: Supervised Learning
	Slide 81: Evaluating Supervised Learning
	Slide 82: Train / Test in practice
	Slide 83: Train/Test is not Infallible
	Slide 84: K-fold Cross Validation
	Slide 85: Let’s go do some training and testing.
	Slide 86: Bayesian Methods
	Slide 87: Remember Bayes’ Theorem?
	Slide 88: What about all the other words?
	Slide 89: Sounds like a lot of work.
	Slide 90: K-Means Clustering
	Slide 91: K-Means Clustering
	Slide 92: K-Means Clustering
	Slide 93: Graphical example
	Slide 94: K-Means Clustering Gotchas
	Slide 95: Let’s cluster stuff.
	Slide 96: Entropy
	Slide 97: Entropy
	Slide 98: Computing entropy
	Slide 99: Decision Trees
	Slide 100: Decision Trees
	Slide 101: Decision Tree example
	Slide 102: Totally Fabricated Hiring Data
	Slide 103: Totally Fabricated Should-I-Hire-This-Person Tree
	Slide 104: How Decision Trees Work
	Slide 105: Random Forests
	Slide 106: Let’s go make some trees.
	Slide 107: Ensemble Learning
	Slide 108: Ensemble Learning
	Slide 109: Ensemble Learning
	Slide 110: Advanced Ensemble Learning: Ways to Sound Smart
	Slide 111: XGBoost
	Slide 112: XGBoost
	Slide 113: Features of XGBoost
	Slide 114: Using XGBoost
	Slide 115: XGBoost Hyperparameters
	Slide 116: XGBoost
	Slide 117: Support Vector Machines
	Slide 118: Support Vector Machines
	Slide 119: Higher dimensions? Hyperplanes? Huh?
	Slide 120: Support Vector Classification
	Slide 121: Let’s play with SVC’s
	Slide 122: Recommender Systems
	Slide 123: What are recommender systems?
	Slide 124: User-Based Collaborative Filtering
	Slide 125: User-Based Collaborative Filtering
	Slide 126: User-Based Collaborative Filtering
	Slide 127: Problems with User-Based CF
	Slide 128: What if we based recommendations on relationships between things instead of people?
	Slide 129: Item-Based Collaborative Filtering
	Slide 130: Item-Based Collaborative Filtering
	Slide 131: Item-Based Collaborative Filtering
	Slide 132: Item-Based Collaborative Filtering
	Slide 133: Item-Based Collaborative Filtering
	Slide 134: Let’s Do This
	Slide 135: K-Nearest Neighbor
	Slide 136: K-Nearest Neighbor (KNN)
	Slide 137: It’s Really That Simple
	Slide 138: Discrete Choice Models
	Slide 139: Discrete Choice Models
	Slide 140: Discrete Choice Models
	Slide 141: Example
	Slide 142: The Curse of Dimensionality
	Slide 143: What is the curse of dimensionality?
	Slide 144: Remember K-Means Clustering?
	Slide 145: Another way: Principal Component Analysis (PCA)
	Slide 146: Example: Visualizing 4-D Iris Flower Data
	Slide 147: Example: Visualizing 4-D Iris Flower Data
	Slide 148: ETL and ELT
	Slide 149: What is Data Warehousing?
	Slide 150: ETL: Extract, Transform, Load
	Slide 151: ELT: Extract, Load, Transform
	Slide 152: Lots more to explore
	Slide 153: Reinforcement Learning
	Slide 154: Reinforcement Learning
	Slide 155: Q-Learning
	Slide 156: Q-Learning
	Slide 157: The exploration problem
	Slide 158: Fancy Words
	Slide 159: More Fancy Words
	Slide 160: So to recap
	Slide 161: Implementing Reinforcement Learning
	Slide 162: Confusion Matrix
	Slide 163: Sometimes accuracy doesn’t tell the whole story
	Slide 164: Binary confusion matrix
	Slide 165: Image has cat?
	Slide 166: Another format
	Slide 167: Multi-class confusion matrix + heat map
	Slide 168: Measuring your Models
	Slide 169: Remember our friend the confusion matrix
	Slide 170: Recall
	Slide 171: Recall example
	Slide 172: Precision
	Slide 173: Precision example
	Slide 174: Other metrics
	Slide 175: ROC Curve
	Slide 176: AUC
	Slide 177: The Bias / Variance Tradeoff
	Slide 178: Bias and Variance
	Slide 179: Often you need to choose between bias and variance
	Slide 180: But what you really care about is error
	Slide 181: Tying it to earlier lessons
	Slide 182: Avoiding Overfitting
	Slide 183: Review: K-Fold Cross Validation
	Slide 184: Using K-Fold Cross Validation
	Slide 185: Let’s Play
	Slide 186: Cleaning Your Data
	Slide 187: Cleaning your Data
	Slide 188: Garbage In, Garbage Out
	Slide 189: Let’s analyze some web log data.
	Slide 190: Normalizing Numerical Data
	Slide 191: The importance of normalizing data
	Slide 192: Examples
	Slide 193: Read the docs
	Slide 194: Dealing with Outliers
	Slide 195: Dealing with Outliers
	Slide 196: Dealing with Outliers
	Slide 197: Let’s play with some data.
	Slide 198: Feature Engineering
	Slide 199: What is feature engineering?
	Slide 200: The Curse of Dimensionality
	Slide 201: Imputing Missing Data: Mean Replacement
	Slide 202: Imputing Missing Data: Dropping
	Slide 203: Imputing Missing Data: Machine Learning
	Slide 204: Imputing Missing Data: Just Get More Data
	Slide 205: Handling Unbalanced Data
	Slide 206: What is unbalanced data?
	Slide 207: Oversampling
	Slide 208: Undersampling
	Slide 209: SMOTE
	Slide 210: Adjusting thresholds
	Slide 211: Binning
	Slide 212: Transforming
	Slide 213: Encoding
	Slide 214: Scaling / Normalization
	Slide 215: Shuffling
	Slide 216: Installing Apache Spark on Windows
	Slide 217: Installing Spark on Windows
	Slide 218: Installing Spark on other OS’s
	Slide 219: Let’s Do It
	Slide 220: Spark Introduction
	Slide 221: What is Spark?
	Slide 222: It’s Scalable
	Slide 223: It’s Fast
	Slide 224: It’s Hot
	Slide 225: It’s Not That Hard
	Slide 226: Components of Spark
	Slide 227: Python vs. Scala
	Slide 228: Fear Not
	Slide 229: Resilient Distributed Datasets (RDDs)
	Slide 230: RDD
	Slide 231: The SparkContext
	Slide 232: Creating RDD’s
	Slide 233: Transforming RDD’s
	Slide 234: Map() example
	Slide 235: What’s that lambda thing?
	Slide 236: RDD Actions
	Slide 237: Lazy Evaluation
	Slide 238: Introducing MLLib
	Slide 239: Some MLLib Capabilities
	Slide 240: Special MLLib Data Types
	Slide 241: TF-IDF
	Slide 242: TF-IDF
	Slide 243: TF-IDF Explained
	Slide 244: TF-IDF Explained
	Slide 245: TF-IDF In Practice
	Slide 246: Using TF-IDF
	Slide 247: Let’s use TF-IDF on Wikipedia
	Slide 248: Deploying models for real-time use
	Slide 249: How do I use my model in an app?
	Slide 250: Example: Google Cloud ML
	Slide 251: Example: AWS (recommender system)
	Slide 252: Other approaches
	Slide 253: A/B Tests
	Slide 254: What is an A/B test?
	Slide 255: What sorts of things can you test?
	Slide 256: How do you measure conversion
	Slide 257: Variance is your Enemy
	Slide 258: Variance is your Enemy
	Slide 259: T-Tests and P-Values
	Slide 260: Determining significance
	Slide 261: The T-Statistic
	Slide 262: The P-Value
	Slide 263: Using P-values
	Slide 264: Let’s work through an example.
	Slide 265: How Long Do I Run an Experiment?
	Slide 266: How do I know when I’m done with an A/B test?
	Slide 267: A/B Test Gotchas
	Slide 268: Correlation does not imply causation
	Slide 269: Novelty Effects
	Slide 270: Seasonal Effects
	Slide 271: Selection Bias
	Slide 272: Data Pollution
	Slide 273: Attribution Errors
	Slide 274
	Slide 275: gradient descent
	Slide 276: autodiff
	Slide 277: softmax
	Slide 278: in review
	Slide 279
	Slide 280: the biological inspiration
	Slide 281: cortical columns
	Slide 282: the first artificial neurons
	Slide 283: the linear threshold unit (ltu)
	Slide 284: the perceptron
	Slide 285: multi-layer perceptrons
	Slide 286: a modern deep neural network
	Slide 287
	Slide 288
	Slide 289: backpropagation
	Slide 290: activation functions (aka rectifier)
	Slide 291: optimization functions
	Slide 292: avoiding overfitting
	Slide 293: tuning your topology
	Slide 294
	Slide 295: why tensorflow?
	Slide 296: tensorflow basics
	Slide 297: creating a neural network with tensorflow
	Slide 298: creating a neural network with tensorflow
	Slide 299: make sure your features are normalized
	Slide 300
	Slide 301: why keras?
	Slide 302: let’s dive in
	Slide 303: Example: multi-class classification
	Slide 304: example: binary classification
	Slide 305: integrating keras with scikit-learn
	Slide 306: let’s try it out
	Slide 307
	Slide 308: cnn’s: what are they for?
	Slide 309: cnn’s: how do they work?
	Slide 310: how do we “know” that’s a stop sign?
	Slide 311: cnn’s with keras
	Slide 312: cnn’s are hard
	Slide 313: specialized cnn architectures
	Slide 314: let’s try it out
	Slide 315
	Slide 316: rnn’s: what are they for?
	Slide 317: a recurrent neuron
	Slide 318: another way to look at it
	Slide 319: a layer of recurrent neurons
	Slide 320: rnn topologies
	Slide 321: training rnn’s
	Slide 322: training rnn’s
	Slide 323: training rnn’s
	Slide 324: let’s run an example
	Slide 325: Transfer Learning
	Slide 326: Re-using trained models
	Slide 327: Tuning Neural Networks
	Slide 328: Learning Rate
	Slide 329: Effect of learning rate
	Slide 330: Batch Size
	Slide 331: To Recap
	Slide 332: Neural Network Regularization Techniques
	Slide 333: What is regularization?
	Slide 334: Too many layers? Too many neurons?
	Slide 335: Dropout
	Slide 336: Early Stopping
	Slide 337: Generative Modeling
	Slide 338: Variational Auto-Encoders
	Slide 339: Auto-Encoders
	Slide 340: Transpose convolution
	Slide 341: Variational Auto-Encoders
	Slide 342: The “reparameterization trick”
	Slide 343: Kullback-Leibler Divergence
	Slide 344: Generative Adversarial Networks (GAN’s)
	Slide 345: Generative Adversarial Networks
	Slide 346: GAN’s
	Slide 347: Fancy math
	Slide 348: The Transformer Architecture (GPT, ChatGPT)
	Slide 349: The Evolution of Transformers
	Slide 350: The Evolution of Transformers
	Slide 351: “Attention is all you need”
	Slide 352: Transformers
	Slide 353: Self-Attention (in more depth)
	Slide 354: Self-Attention (in more depth)
	Slide 355: Self-Attention (in more depth)
	Slide 356: Masked Self-Attention
	Slide 357: Self-Attention (in more depth)
	Slide 358: Self-Attention (in more depth)
	Slide 359: Multi-Headed Self-Attention
	Slide 360: Applications of Transformers
	Slide 361: From Transformers to GPT
	Slide 362: GPT
	Slide 363: GPT: Input processing
	Slide 364: GPT: Output processing
	Slide 365: Transfer Learning with Transformers
	Slide 366: From GPT to ChatGPT and GPT-4
	Slide 367: From GPT to ChatGPT: Deep Reinforcement Learning
	Slide 368: Policy Gradients
	Slide 369: Pong AI with Policy Gradients
	Slide 370: Proximal Policy Optimization (PPO)
	Slide 371: What do video games and robots have to do with ChatGPT?
	Slide 372: From GPT to ChatGPT: Step 1
	Slide 373: From GPT to ChatGPT: Step 2
	Slide 374: From GPT to ChatGPT: Step 3
	Slide 375: ChatGPT Moderation
	Slide 376: …and that’s how you build an AI.
	Slide 377: The OpenAI API
	Slide 378: Chat Completions
	Slide 379: Tools and Functions
	Slide 380: Image generation
	Slide 381: Embeddings
	Slide 382: Completions (now deprecated)
	Slide 383: Fine-tunes
	Slide 384: Fine-tunes (legacy)
	Slide 385: Fine-tuning (newer API)
	Slide 386: Moderation
	Slide 387: Audio (speech to text)
	Slide 388: Retrieval Augmented Generation (RAG)
	Slide 389: Retrieval Augmented Generation (RAG)
	Slide 390: RAG: Pros and Cons
	Slide 391: RAG: Example Approach (winning at Jeopardy!)
	Slide 392: Choosing a Database for RAG
	Slide 393: Review: embeddings
	Slide 394: Embeddings are vectors, so store them in…
	Slide 395: RAG Example with a Vector Database: Making Data from Star Trek, by Cheating.
	Slide 396: Let’s go actually build that now.
	Slide 397: The Ethics of Deep Learning
	Slide 398: Types of errors
	Slide 399: Hidden biases
	Slide 400: Is it really better than a human?
	Slide 401: Unintended applications of your research
	Slide 402: Learning More about Deep Learning
	Slide 403: Learning more
	Slide 404: Final Project
	Slide 405: Your Assignment

